--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description Usage: ```python from transformers import ParakeetEncoder, AutoProcessor from datasets import load_dataset, Audio import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "nithinraok/parakeet-tdt-v3-encoder" processor = AutoProcessor.from_pretrained(model_id) model = ParakeetEncoder.from_pretrained(model_id).to(device) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") ds = ds.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate)) # just take the first 2 samples ds = ds.select(range(2)) model.eval() for sample in ds: inputs = processor(sample["audio"]["array"]) inputs.to(device, dtype=model.dtype) with torch.no_grad(): outputs = model(**inputs) print(outputs.last_hidden_state.shape) print("sum:", outputs.last_hidden_state.sum())