File size: 24,549 Bytes
e9e2d92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
---
language:
- tr
tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:910904
- loss:Contrastive
base_model: ozayezerceli/mmBERT-base-TR
datasets:
- parsak/msmarco-tr
pipeline_tag: sentence-similarity
library_name: PyLate
---
# PyLate model based on ozayezerceli/mmBERT-base-TR
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [ozayezerceli/mmBERT-base-TR](https://huggingface.co/ozayezerceli/mmBERT-base-TR) on the [msmarco-tr](https://huggingface.co/datasets/parsak/msmarco-tr) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
## Model Details
### Model Description
- **Model Type:** PyLate model
- **Base model:** [ozayezerceli/mmBERT-base-TR](https://huggingface.co/ozayezerceli/mmBERT-base-TR) <!-- at revision d2c45c86ca983e13f7f14d74b5046930232d205d -->
- **Document Length:** 180 tokens
- **Query Length:** 32 tokens
- **Output Dimensionality:** 128 tokens
- **Similarity Function:** MaxSim
- **Training Dataset:**
- [msmarco-tr](https://huggingface.co/datasets/parsak/msmarco-tr)
- **Language:** tr
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
### Full Model Architecture
```
ColBERT(
(0): Transformer({'max_seq_length': 179, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity', 'use_residual': False})
)
```
## Usage
First install the PyLate library:
```bash
pip install -U pylate
```
### Retrieval
Use this model with PyLate to index and retrieve documents. The index uses [FastPLAID](https://github.com/lightonai/fast-plaid) for efficient similarity search.
#### Indexing documents
Load the ColBERT model and initialize the PLAID index, then encode and index your documents:
```python
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path="pylate_model_id",
)
# Step 2: Initialize the PLAID index
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
```
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
```python
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
index_folder="pylate-index",
index_name="index",
)
```
#### Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
```python
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
```
### Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
```python
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path="pylate_model_id",
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### msmarco-tr
* Dataset: [msmarco-tr](https://huggingface.co/datasets/parsak/msmarco-tr) at [ffad30a](https://huggingface.co/datasets/parsak/msmarco-tr/tree/ffad30a7b0648f1c789c639db6c1d4720c22274c)
* Size: 910,904 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 12.04 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 31.98 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 31.98 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:---------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>sinir dokusundaki miyelin kılıfı nerede</code> | <code>Miyelin, bir tabaka oluşturan akson dielektrik (elektriksel olarak yalıtkan) malzemeyi çevreleyen yağlı bir beyaz maddedir, miyelin kılıfı, genellikle sadece bir nöronun aksonu etrafında bulunur. Sinir sisteminin düzgün çalışması için gereklidir. Bir tür glial hücrenin bir dış büyümesidir. Miyelin kılıfının üretimi miyelinasyon olarak adlandırılır. İnsanlarda, miyelin kılıfı 14'üncü haftada başlar.</code> | <code>İnsanlarda, dört temel doku tipi vardır: epitel dokusu, bağ dokusu, kas dokusu ve sinir dokusu. Her genel doku tipi içinde, belirli doku tipleri vardır. Bunu bir futbol takımı gibi düşünün.Her biri sahada kendi 'iş' olan bireysel oyuncular vardır.n insanlar, dört temel doku tipi vardır: epitel dokusu, bağ dokusu, kas dokusu ve sinir dokusu. Bu genel doku tipinde, her bir genel doku tipinde vardır.</code> |
| <code>Okulların Makine Mühendisliğini Sundukları Şeyler</code> | <code>Makine Mühendisliği Teknolojisi Dereceleri için Üst Okullar. Pennsylvania Eyalet Üniversitesi - Harrisburg, Purdue Üniversitesi ve Houston Üniversitesi, makine mühendisliği teknolojisi (MET) alanında lisans derecesi sunan üç okuldur. Bu üniversitelerdeki MET programları hakkında daha fazla bilgi edinmek için okumaya devam edin.</code> | <code>Mühendis tanımı, motorların veya makinelerin tasarımında, yapımında ve kullanımında veya çeşitli mühendislik dallarından herhangi birinde eğitimli ve yetenekli bir kişi: bir makine mühendisi; bir inşaat mühendisi. Daha fazla bilgi için bkz.</code> |
| <code>kim navigatör karıştırma valfleri taşır</code> | <code>BRADLEY THERMOSTATIC MIXING VANAS. Bradley Corporation, armatür ve sıhhi tesisat ürünlerinin üretiminde lider, dört hat üretir. termostatik karıştırma valfleri (TMVs). Bradley Navigator Yüksek Düşük termostatik karıştırma valfleri vardır. Dıştan gelen talebin çok düşük olduğu uygulamalar için idealdir.</code> | <code>Hidrolik Valfler. Eaton valfleri, tüm dünyadaki pazarlarda müşterilerimiz için rekabet avantajı sağlar. Geniş bir seçenek yelpazesinde benzersiz kalite sunan yüksek değerli hidrolik valf ürünlerimiz, gerçek endüstri liderlerinin tüm özelliklerini ve performans seviyelerini içerir. Endüstriyel Valfler.</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Evaluation Dataset
#### msmarco-tr
* Dataset: [msmarco-tr](https://huggingface.co/datasets/parsak/msmarco-tr) at [ffad30a](https://huggingface.co/datasets/parsak/msmarco-tr/tree/ffad30a7b0648f1c789c639db6c1d4720c22274c)
* Size: 9,202 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.96 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 31.98 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 31.96 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Ermin hangi hayvandır</code> | <code>1 Aslında ermine kelimesi beyaz kürklü bir hayvanı ifade ederken, sırt üstü kahverengi kürklü ve karnında baş ve beyaz kürklü bireyler için stoat kullanılır.</code> | <code>Dünyada kaç hayvan türü var? İşte kaba bir sayım ve bilim adamlarının sayılara nasıl ulaştıklarına dair kısa bir açıklama. Dünyada kaç hayvan türü var? İşte kaba bir sayım ve bilim adamlarının sayılara nasıl ulaştıklarına dair kısa bir açıklama. Kaç hayvan türü var? https://www.thoughtco.com/how-many-animal-türleri-on-planet-130923 Strauss, Bob.</code> |
| <code>Abacus nereden çıktı</code> | <code>Abacus: Kısa Bir Tarih. Abacus, kökeni Yunanca abax veya abakon (masa veya tablet anlamına gelir) kelimelerinden gelen ve muhtemelen kum anlamına gelen Semitik abq kelimesinden kaynaklanan Latince bir kelimedir. Abacus, büyük sayıları saymak için kullanılan birçok sayma cihazından biridir.</code> | <code>Hücre apeksinde, bir flagellum için çapa alanı olan bazal gövdedir. Bazal cisimler, dokuz periferik mikrotübül üçlüsü ile centrioles'inkine benzer bir alt yapıya sahiptir (görüntünün alt merkezindeki yapıya bakınız).</code> |
| <code>Başın arkasında radyasyon tedavisi yüz kızarıklığına neden olur mu</code> | <code>Radyasyon Terapisinin En Yaygın Yan Etkileri. Cilt reaksiyonu: Radyasyon tedavisinin yaygın bir yan etkisi, tedavi edilen vücut bölgesinde cilt tahrişidir. Cilt reaksiyonu, hafif kızarıklık ve kuruluktan (güneş yanığına benzer) bazı hastalarda cildin şiddetli soyulmasına (desquamation) kadar değişebilir.</code> | <code>Bu açıklama amfizemi işaret edebilir. Bu, sigara içme geçmişiniz varsa daha da muhtemeldir. Radyasyon terapisi bilinen nedenlerden biri değildir. Bu konuda daha fazla cevap almak ve semptomlarınızı çözmeye yardımcı olmak için bir pulmonologla takip etmenizi isteyeceğim. Umarım bu, sorgunuzu tamamen ele alır. Sigara içme geçmişiniz varsa, daha da fazla umut eder. Radyasyon terapisi, bu sorunun çözümüne yardımcı olmanızı ve bu sorunun cevabını takip etmenizi isterim.</code> |
* Loss: <code>pylate.losses.contrastive.Contrastive</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 3e-06
- `num_train_epochs`: 1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0001 | 1 | 4.262 |
| 0.0351 | 500 | 0.8248 |
| 0.0703 | 1000 | 0.3406 |
| 0.1054 | 1500 | 0.2613 |
| 0.1405 | 2000 | 0.2255 |
| 0.1756 | 2500 | 0.1987 |
| 0.2108 | 3000 | 0.1839 |
| 0.2459 | 3500 | 0.1748 |
| 0.2810 | 4000 | 0.1781 |
| 0.3162 | 4500 | 0.1596 |
| 0.3513 | 5000 | 0.1542 |
| 0.3864 | 5500 | 0.1505 |
| 0.4216 | 6000 | 0.1457 |
| 0.4567 | 6500 | 0.1361 |
| 0.4918 | 7000 | 0.1372 |
| 0.5269 | 7500 | 0.1371 |
| 0.5621 | 8000 | 0.1384 |
| 0.5972 | 8500 | 0.1319 |
| 0.6323 | 9000 | 0.132 |
| 0.6675 | 9500 | 0.1268 |
| 0.7026 | 10000 | 0.1265 |
| 0.7377 | 10500 | 0.1236 |
| 0.7729 | 11000 | 0.1256 |
| 0.8080 | 11500 | 0.1225 |
| 0.8431 | 12000 | 0.1221 |
| 0.8782 | 12500 | 0.1177 |
| 0.9134 | 13000 | 0.1218 |
| 0.9485 | 13500 | 0.1215 |
| 0.9836 | 14000 | 0.1201 |
### Framework Versions
- Python: 3.12.12
- Sentence Transformers: 5.1.1
- PyLate: 1.3.4
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
```
#### PyLate
```bibtex
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |