--- base_model: alfredcs/gemma-3-27b-firstaid-icd10-merged language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - grpo - GRPO - Reasoning-Course --- ## About static quants of https://huggingface.co/alfredcs/gemma-3-27b-firstaid-icd10-merged ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gemma-3-27b-firstaid-icd10-merged-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.7 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.mmproj-f16.gguf) | mmproj-f16 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q2_K.gguf) | Q2_K | 11.1 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q3_K_S.gguf) | Q3_K_S | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q3_K_M.gguf) | Q3_K_M | 14.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q3_K_L.gguf) | Q3_K_L | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.IQ4_XS.gguf) | IQ4_XS | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q4_K_S.gguf) | Q4_K_S | 16.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q4_K_M.gguf) | Q4_K_M | 17.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q5_K_S.gguf) | Q5_K_S | 19.8 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q5_K_M.gguf) | Q5_K_M | 20.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q6_K.gguf) | Q6_K | 23.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma-3-27b-firstaid-icd10-merged-GGUF/resolve/main/gemma-3-27b-firstaid-icd10-merged.Q8_0.gguf) | Q8_0 | 30.3 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.