--- base_model: ubitech-edg/commandr-35b-cpt-sft datasets: - arxiv - gov - news - wikipedia - axolotl_deduplicated_synthetic_qa language: - en library_name: transformers license: apache-2.0 model_name: commandr-35b-cpt-sft model_type: AutoModelForCausalLM mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation - causal-lm - two-stage-training - continual-pretraining - supervised-fine-tuning - synthetic-qa - lora - axolotl - deepspeed - transformers - commandr - cohere - eu-hpc --- ## About weighted/imatrix quants of https://huggingface.co/ubitech-edg/commandr-35b-cpt-sft ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#commandr-35b-cpt-sft-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/commandr-35b-cpt-sft-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ1_S.gguf) | i1-IQ1_S | 8.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ1_M.gguf) | i1-IQ1_M | 9.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 10.3 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ2_XS.gguf) | i1-IQ2_XS | 11.2 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ2_S.gguf) | i1-IQ2_S | 11.9 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ2_M.gguf) | i1-IQ2_M | 12.8 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q2_K_S.gguf) | i1-Q2_K_S | 12.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q2_K.gguf) | i1-Q2_K | 13.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 13.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ3_XS.gguf) | i1-IQ3_XS | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ3_S.gguf) | i1-IQ3_S | 16.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q3_K_S.gguf) | i1-Q3_K_S | 16.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ3_M.gguf) | i1-IQ3_M | 16.8 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q3_K_M.gguf) | i1-Q3_K_M | 17.7 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q3_K_L.gguf) | i1-Q3_K_L | 19.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-IQ4_XS.gguf) | i1-IQ4_XS | 19.3 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q4_0.gguf) | i1-Q4_0 | 20.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q4_K_S.gguf) | i1-Q4_K_S | 20.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q4_K_M.gguf) | i1-Q4_K_M | 21.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q4_1.gguf) | i1-Q4_1 | 22.4 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q5_K_S.gguf) | i1-Q5_K_S | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q5_K_M.gguf) | i1-Q5_K_M | 25.1 | | | [GGUF](https://huggingface.co/mradermacher/commandr-35b-cpt-sft-i1-GGUF/resolve/main/commandr-35b-cpt-sft.i1-Q6_K.gguf) | i1-Q6_K | 28.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.