--- base_model: LTS-VVE/Teuta datasets: - LTS-VVE/Teuta-sq - LTS-VVE/grammar_sq_0.1 - LTS-VVE/linguistic_sq - LTS-VVE/Math-physics-dataset-sq - LTS-VVE/albanian-synthetic - noxneural/lilium_albanicum_eng_alb - MIND-Lab/Safety-Evaluation - shb777/simple-math-steps-7M - RishiKompelli/TherapyDataset - microsoft/orca-math-word-problems-200k - Vezora/Tested-143k-Python-Alpaca - AI4Chem/ChemPref-DPO-for-Chemistry-data-en - jkhedri/psychology-dataset - samhog/psychology-10k - Amod/mental_health_counseling_conversations - sayhan/strix-philosophy-qa - Maverfrick/Rust_dataset - Neloy262/rust_instruction_dataset - Tesslate/Rust_Dataset language: - en - sq library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - al - math - philosophy - chemistry - code - biology - climate - not-for-all-audiences --- ## About static quants of https://huggingface.co/LTS-VVE/Teuta ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Teuta-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Teuta-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Teuta-GGUF/resolve/main/Teuta.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.