Transformers
GGUF
English
shining-valiant
shining-valiant-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
reasoning
code
code-reasoning
science
science-reasoning
physics
biology
chemistry
earth-science
astronomy
machine-learning
artificial-intelligence
compsci
computer-science
information-theory
ML-Ops
math
cuda
deep-learning
agentic
LLM
neuromorphic
self-improvement
complex-systems
cognition
linguistics
philosophy
logic
epistemology
simulation
game-theory
knowledge-management
creativity
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
File size: 4,245 Bytes
7be30e8 9e6900b 7be30e8 9178375 7be30e8 9178375 7be30e8 9178375 7be30e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
base_model: ValiantLabs/Qwen3-8B-ShiningValiant3
datasets:
- sequelbox/Celestia3-DeepSeek-R1-0528
- sequelbox/Mitakihara-DeepSeek-R1-0528
- sequelbox/Raiden-DeepSeek-R1
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- shining-valiant
- shining-valiant-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-8b
- 8b
- reasoning
- code
- code-reasoning
- science
- science-reasoning
- physics
- biology
- chemistry
- earth-science
- astronomy
- machine-learning
- artificial-intelligence
- compsci
- computer-science
- information-theory
- ML-Ops
- math
- cuda
- deep-learning
- transformers
- agentic
- LLM
- neuromorphic
- self-improvement
- complex-systems
- cognition
- linguistics
- philosophy
- logic
- epistemology
- simulation
- game-theory
- knowledge-management
- creativity
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ValiantLabs/Qwen3-8B-ShiningValiant3
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-ShiningValiant3-GGUF/resolve/main/Qwen3-8B-ShiningValiant3.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|