Transformers
GGUF
English
shining-valiant
shining-valiant-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-4b
4b
reasoning
code
code-reasoning
science
science-reasoning
physics
biology
chemistry
earth-science
astronomy
machine-learning
artificial-intelligence
compsci
computer-science
information-theory
ML-Ops
math
cuda
deep-learning
agentic
LLM
neuromorphic
self-improvement
complex-systems
cognition
linguistics
philosophy
logic
epistemology
simulation
game-theory
knowledge-management
creativity
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
File size: 4,573 Bytes
de55149 ec9b79d de55149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
base_model: ValiantLabs/Qwen3-4B-ShiningValiant3
datasets:
- sequelbox/Celestia3-DeepSeek-R1-0528
- sequelbox/Mitakihara-DeepSeek-R1-0528
- sequelbox/Raiden-DeepSeek-R1
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- shining-valiant
- shining-valiant-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-4b
- 4b
- reasoning
- code
- code-reasoning
- science
- science-reasoning
- physics
- biology
- chemistry
- earth-science
- astronomy
- machine-learning
- artificial-intelligence
- compsci
- computer-science
- information-theory
- ML-Ops
- math
- cuda
- deep-learning
- transformers
- agentic
- LLM
- neuromorphic
- self-improvement
- complex-systems
- cognition
- linguistics
- philosophy
- logic
- epistemology
- simulation
- game-theory
- knowledge-management
- creativity
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/ValiantLabs/Qwen3-4B-ShiningValiant3
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-4B-ShiningValiant3-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q5_K_M.gguf) | Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q6_K.gguf) | Q6_K | 3.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-ShiningValiant3-GGUF/resolve/main/Qwen3-4B-ShiningValiant3.f16.gguf) | f16 | 8.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|