Transformers
GGUF
HERMES
English
mergekit
Merge
text-generation-inference
chat
roleplay
creative-writing
causal-lm
Oobabooga
Agnai
OWUI
Kobold-AI
arcee-merge
llama-3
8b
long-context
Not-For-All-Audiences
nsfw
18+
conversational
File size: 3,530 Bytes
89e7a67 d9f6c17 89e7a67 9995bc6 89e7a67 24e42db 89e7a67 24e42db 89e7a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
base_model: Babsie/CrossroadsLoki-MoE-2x8B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
- text-generation-inference
- chat
- roleplay
- creative-writing
- causal-lm
- Oobabooga
- Agnai
- OWUI
- Kobold-AI
- arcee-merge
- llama-3
- hermes
- 8b
- long-context
- not-for-all-audiences
- nsfw
- 18+
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Babsie/CrossroadsLoki-MoE-2x8B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Lokis_Veil-8B-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Lokis_Veil-8B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q2_K.gguf) | Q2_K | 5.3 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q3_K_S.gguf) | Q3_K_S | 6.2 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q3_K_M.gguf) | Q3_K_M | 6.8 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q3_K_L.gguf) | Q3_K_L | 7.3 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.IQ4_XS.gguf) | IQ4_XS | 7.6 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q4_K_S.gguf) | Q4_K_S | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q4_K_M.gguf) | Q4_K_M | 8.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q5_K_S.gguf) | Q5_K_S | 9.6 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q5_K_M.gguf) | Q5_K_M | 9.8 | |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q6_K.gguf) | Q6_K | 11.3 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Lokis_Veil-8B-GGUF/resolve/main/Lokis_Veil-8B.Q8_0.gguf) | Q8_0 | 14.6 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|