Transformers
GGUF
English
shining-valiant
shining-valiant-2
valiant
valiant-labs
llama
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-70b
llama-3
llama-3-instruct
llama-3-instruct-70b
70b
science
physics
biology
chemistry
compsci
computer-science
engineering
logic
rationality
advanced
expert
technical
conversational
chat
instruct
| base_model: ValiantLabs/Llama3.1-70B-ShiningValiant2 | |
| datasets: | |
| - sequelbox/Celestia | |
| - sequelbox/Spurline | |
| - sequelbox/Supernova | |
| language: | |
| - en | |
| library_name: transformers | |
| license: llama3.1 | |
| model_type: llama | |
| quantized_by: mradermacher | |
| tags: | |
| - shining-valiant | |
| - shining-valiant-2 | |
| - valiant | |
| - valiant-labs | |
| - llama | |
| - llama-3.1 | |
| - llama-3.1-instruct | |
| - llama-3.1-instruct-70b | |
| - llama-3 | |
| - llama-3-instruct | |
| - llama-3-instruct-70b | |
| - 70b | |
| - science | |
| - physics | |
| - biology | |
| - chemistry | |
| - compsci | |
| - computer-science | |
| - engineering | |
| - logic | |
| - rationality | |
| - advanced | |
| - expert | |
| - technical | |
| - conversational | |
| - chat | |
| - instruct | |
| ## About | |
| <!-- ### quantize_version: 2 --> | |
| <!-- ### output_tensor_quantised: 1 --> | |
| <!-- ### convert_type: hf --> | |
| <!-- ### vocab_type: --> | |
| <!-- ### tags: --> | |
| static quants of https://huggingface.co/ValiantLabs/Llama3.1-70B-ShiningValiant2 | |
| <!-- provided-files --> | |
| weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. | |
| ## Usage | |
| If you are unsure how to use GGUF files, refer to one of [TheBloke's | |
| READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for | |
| more details, including on how to concatenate multi-part files. | |
| ## Provided Quants | |
| (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | |
| | Link | Type | Size/GB | Notes | | |
| |:-----|:-----|--------:|:------| | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q2_K.gguf) | Q2_K | 26.5 | | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | |
| | [GGUF](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | |
| | [PART 1](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | |
| | [PART 1](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3.1-70B-ShiningValiant2-GGUF/resolve/main/Llama3.1-70B-ShiningValiant2.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | | |
| Here is a handy graph by ikawrakow comparing some lower-quality quant | |
| types (lower is better): | |
|  | |
| And here are Artefact2's thoughts on the matter: | |
| https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 | |
| ## FAQ / Model Request | |
| See https://huggingface.co/mradermacher/model_requests for some answers to | |
| questions you might have and/or if you want some other model quantized. | |
| ## Thanks | |
| I thank my company, [nethype GmbH](https://www.nethype.de/), for letting | |
| me use its servers and providing upgrades to my workstation to enable | |
| this work in my free time. | |
| <!-- end --> | |