mradermacher commited on
Commit
a37a898
·
verified ·
1 Parent(s): edba308

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -1,3 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
@@ -7,3 +31,54 @@
7
  <!-- ### quants_skip: -->
8
  <!-- ### skip_mmproj: -->
9
  static quants of https://huggingface.co/huihui-ai/Huihui-gemma-3n-E2B-it-abliterated
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huihui-ai/Huihui-gemma-3n-E2B-it-abliterated
3
+ extra_gated_button_content: Acknowledge license
4
+ extra_gated_heading: Access Gemma on Hugging Face
5
+ extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
6
+ agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
7
+ Face and click below. Requests are processed immediately.
8
+ language:
9
+ - en
10
+ library_name: transformers
11
+ license: gemma
12
+ mradermacher:
13
+ readme_rev: 1
14
+ quantized_by: mradermacher
15
+ tags:
16
+ - automatic-speech-recognition
17
+ - automatic-speech-translation
18
+ - audio-text-to-text
19
+ - video-text-to-text
20
+ - abliterated
21
+ - uncensored
22
+ ---
23
+ ## About
24
+
25
  <!-- ### quantize_version: 2 -->
26
  <!-- ### output_tensor_quantised: 1 -->
27
  <!-- ### convert_type: hf -->
 
31
  <!-- ### quants_skip: -->
32
  <!-- ### skip_mmproj: -->
33
  static quants of https://huggingface.co/huihui-ai/Huihui-gemma-3n-E2B-it-abliterated
34
+
35
+ <!-- provided-files -->
36
+
37
+ ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Huihui-gemma-3n-E2B-it-abliterated-GGUF).***
38
+
39
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-i1-GGUF
40
+ ## Usage
41
+
42
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
43
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
44
+ more details, including on how to concatenate multi-part files.
45
+
46
+ ## Provided Quants
47
+
48
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
49
+
50
+ | Link | Type | Size/GB | Notes |
51
+ |:-----|:-----|--------:|:------|
52
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q2_K.gguf) | Q2_K | 2.0 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q3_K_S.gguf) | Q3_K_S | 2.3 | |
54
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q3_K_M.gguf) | Q3_K_M | 2.4 | lower quality |
55
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q3_K_L.gguf) | Q3_K_L | 2.5 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.IQ4_XS.gguf) | IQ4_XS | 2.7 | |
57
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q4_K_S.gguf) | Q4_K_S | 2.8 | fast, recommended |
58
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q4_K_M.gguf) | Q4_K_M | 2.9 | fast, recommended |
59
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q5_K_S.gguf) | Q5_K_S | 3.3 | |
60
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q5_K_M.gguf) | Q5_K_M | 3.3 | |
61
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q6_K.gguf) | Q6_K | 3.8 | very good quality |
62
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.Q8_0.gguf) | Q8_0 | 4.9 | fast, best quality |
63
+ | [GGUF](https://huggingface.co/mradermacher/Huihui-gemma-3n-E2B-it-abliterated-GGUF/resolve/main/Huihui-gemma-3n-E2B-it-abliterated.f16.gguf) | f16 | 9.0 | 16 bpw, overkill |
64
+
65
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
66
+ types (lower is better):
67
+
68
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
69
+
70
+ And here are Artefact2's thoughts on the matter:
71
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
72
+
73
+ ## FAQ / Model Request
74
+
75
+ See https://huggingface.co/mradermacher/model_requests for some answers to
76
+ questions you might have and/or if you want some other model quantized.
77
+
78
+ ## Thanks
79
+
80
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
81
+ me use its servers and providing upgrades to my workstation to enable
82
+ this work in my free time.
83
+
84
+ <!-- end -->