Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +108 -3
- chat_template.jinja +48 -0
- config.json +86 -0
- configuration_kimi.py +140 -0
- figures/arch.png +3 -0
- figures/banner.png +0 -0
- figures/logo.png +0 -0
- figures/perf_speed.png +3 -0
- generation_config.json +7 -0
- model-00001-of-00020.safetensors +3 -0
- model-00002-of-00020.safetensors +3 -0
- model-00003-of-00020.safetensors +3 -0
- model-00004-of-00020.safetensors +3 -0
- model-00005-of-00020.safetensors +3 -0
- model-00006-of-00020.safetensors +3 -0
- model-00007-of-00020.safetensors +3 -0
- model-00008-of-00020.safetensors +3 -0
- model-00009-of-00020.safetensors +3 -0
- model-00010-of-00020.safetensors +3 -0
- model-00011-of-00020.safetensors +3 -0
- model-00012-of-00020.safetensors +3 -0
- model-00013-of-00020.safetensors +3 -0
- model-00014-of-00020.safetensors +3 -0
- model-00015-of-00020.safetensors +3 -0
- model-00016-of-00020.safetensors +3 -0
- model-00017-of-00020.safetensors +3 -0
- model-00018-of-00020.safetensors +3 -0
- model-00019-of-00020.safetensors +3 -0
- model-00020-of-00020.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_kimi.py +1028 -0
- special_tokens_map.json +260 -0
- tiktoken.model +3 -0
- tokenization_kimi.py +347 -0
- tokenizer_config.json +164 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
figures/arch.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
figures/perf_speed.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,108 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
<div align="center">
|
| 5 |
+
<a href="https://github.com/MoonshotAI/Kimi-Linear/blob/master/tech_report.pdf"><img width="80%" src="figures/banner.png"></a>
|
| 6 |
+
</div>
|
| 7 |
+
|
| 8 |
+
<div align="center">
|
| 9 |
+
<a href="https://github.com/MoonshotAI/Kimi-Linear/blob/master/tech_report.pdf"><img src="figures/logo.png" height="16" width="16" style="vertical-align:middle"><b> Tech Report</b></a> |
|
| 10 |
+
<a href="https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Instruct"><img src="https://huggingface.co/front/assets/huggingface_logo-noborder.svg" height="16" width="16" style="vertical-align:middle"><b> HuggingFace</b></a>
|
| 11 |
+
</div>
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
<div align="center">
|
| 15 |
+
<img width="90%" src="figures/perf_speed.png">
|
| 16 |
+
<p><em><b>(a)</b> On MMLU-Pro (4k context length), Kimi Linear achieves 51.0 performance with similar speed as full attention. On RULER (128k context length), it shows Pareto-optimal performance (84.3) and 3.98x speedup. <b>(b)</b> Kimi Linear achieves 6.3x faster TPOT compared to MLA, offering significant speedups at long sequence lengths (1M tokens).</em></p>
|
| 17 |
+
</div>
|
| 18 |
+
|
| 19 |
+
## Overview
|
| 20 |
+
|
| 21 |
+
Kimi Linear is a hybrid linear attention architecture that outperforms traditional full attention methods across various contexts, including short, long, and reinforcement learning (RL) scaling regimes.
|
| 22 |
+
At its core is Kimi Delta Attention (KDA)—a refined version of [Gated DeltaNet](https://arxiv.org/abs/2412.06464) that introduces a more efficient gating mechanism to optimize the use of finite-state RNN memory.
|
| 23 |
+
|
| 24 |
+
Kimi Linear achieves superior performance and hardware efficiency, especially for long-context tasks. It reduces the need for large KV caches by up to 75% and boosts decoding throughput by up to $6\times$ for contexts as long as 1M tokens.
|
| 25 |
+
|
| 26 |
+
We open-source the KDA kernel in [FLA](https://github.com/fla-org/flash-linear-attention/tree/main/fla/ops/kda), and release two versions model checkpoints trained with 5.7T tokens.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** |
|
| 30 |
+
| :------------------: | :---------------: | :-------------------: | :----------------: | :------------------------------------------------------------------------------: |
|
| 31 |
+
| Kimi-Linear-Base | 48B | 3B | 1M | [🤗 Hugging Face](https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Base) |
|
| 32 |
+
| Kimi-Linear-Instruct | 48B | 3B | 1M | [🤗 Hugging Face](https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Instruct) |
|
| 33 |
+
|
| 34 |
+
## Key Features
|
| 35 |
+
|
| 36 |
+
- **Kimi Delta Attention (KDA):** A linear attention mechanism that refines the gated delta rule with finegrained gating.
|
| 37 |
+
- **Hybrid Architecture:** A 3:1 KDA-to-global MLA ratio reduces memory usage while maintaining or surpassing the quality of full attention.
|
| 38 |
+
- **Superior Performance:** Outperforms full attention in a variety of tasks, including long-context and RL-style benchmarks on 1.4T token training runs with fair comparisons.
|
| 39 |
+
- **High Throughput:** Achieves up to $6\times$ faster decoding and significantly reduces time per output token (TPOT).
|
| 40 |
+
|
| 41 |
+
<div align="center">
|
| 42 |
+
<img width="60%" src="figures/arch.png">
|
| 43 |
+
</div>
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
|
| 47 |
+
### Inference with Hugging Face Transformers
|
| 48 |
+
|
| 49 |
+
To use the Kimi Linear model, we recommend the following environment:
|
| 50 |
+
|
| 51 |
+
* `python` >= 3.10
|
| 52 |
+
* `torch` >= 2.6
|
| 53 |
+
* `fla-core` >= 0.4.0
|
| 54 |
+
|
| 55 |
+
```shell
|
| 56 |
+
pip install -U fla-core
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Example Code:
|
| 60 |
+
```py
|
| 61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 62 |
+
|
| 63 |
+
model_name = "moonshotai/Kimi-Linear-48B-A3B-Instruct"
|
| 64 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
+
model_name,
|
| 66 |
+
torch_dtype="auto",
|
| 67 |
+
device_map="auto",
|
| 68 |
+
trust_remote_code=True
|
| 69 |
+
)
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 71 |
+
|
| 72 |
+
messages = [
|
| 73 |
+
{"role": "system", "content": "You are a helpful assistant provided by Moonshot-AI."},
|
| 74 |
+
{"role": "user", "content": "Is 123 a prime?"}
|
| 75 |
+
]
|
| 76 |
+
input_ids = tokenizer.apply_chat_template(
|
| 77 |
+
messages,
|
| 78 |
+
add_generation_prompt=True,
|
| 79 |
+
return_tensors="pt"
|
| 80 |
+
).to(model.device)
|
| 81 |
+
generated_ids = model.generate(inputs=input_ids, max_new_tokens=500)
|
| 82 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
| 83 |
+
print(response)
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### Deployment
|
| 87 |
+
|
| 88 |
+
For deployment, you can use the latest vllm to create an OpenAI-compatible API endpoint.
|
| 89 |
+
|
| 90 |
+
```sh
|
| 91 |
+
vllm serve moonshotai/Kimi-Linear-48B-A3B-Instruct \
|
| 92 |
+
--port 8000 \
|
| 93 |
+
--tensor-parallel-size 4 \
|
| 94 |
+
--max-model-len 1048576 \
|
| 95 |
+
--trust-remote-code
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### Citation
|
| 99 |
+
|
| 100 |
+
If you found our work useful, please cite
|
| 101 |
+
```bibtex
|
| 102 |
+
@article{kimi2025kda,
|
| 103 |
+
title = {Kimi Linear: An Expressive, Efficient Attention Architecture},
|
| 104 |
+
author = {kimi Team},
|
| 105 |
+
year = {2025},
|
| 106 |
+
url = {https://github.com/MoonshotAI/Kimi-Linear/blob/master/tech_report.pdf}
|
| 107 |
+
}
|
| 108 |
+
```
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{% macro render_content(msg) -%}
|
| 2 |
+
{%- set c = msg.get('content') -%}
|
| 3 |
+
{%- if c is string -%}
|
| 4 |
+
{{ c }}
|
| 5 |
+
{%- elif c is not none -%}
|
| 6 |
+
{% for content in c -%}
|
| 7 |
+
{% if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}
|
| 8 |
+
<|media_start|>image<|media_content|><|media_pad|><|media_end|>
|
| 9 |
+
{% else -%}
|
| 10 |
+
{{ content['text'] }}
|
| 11 |
+
{%- endif -%}
|
| 12 |
+
{%- endfor -%}
|
| 13 |
+
{%- endif -%}
|
| 14 |
+
{%- endmacro %}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
{%- if tools -%}
|
| 18 |
+
<|im_system|>tool_declare<|im_middle|>{{ tools | tojson(separators=(',', ':')) }}<|im_end|>
|
| 19 |
+
{%- endif -%}
|
| 20 |
+
{% for message in messages %}
|
| 21 |
+
{%- set role_name = message.get('name') or message['role'] -%}
|
| 22 |
+
{%- if message['role'] == 'user' -%}
|
| 23 |
+
<|im_user|>{{role_name}}<|im_middle|>
|
| 24 |
+
{%- elif message['role'] == 'assistant' -%}
|
| 25 |
+
<|im_assistant|>{{role_name}}<|im_middle|>
|
| 26 |
+
{%- else -%}
|
| 27 |
+
<|im_system|>{{role_name}}<|im_middle|>
|
| 28 |
+
{%- endif -%}
|
| 29 |
+
|
| 30 |
+
{%- if message['role'] == 'assistant' and message.get('tool_calls') -%}
|
| 31 |
+
{{render_content(message)}}<|tool_calls_section_begin|>
|
| 32 |
+
{%- for tool_call in message['tool_calls'] -%}
|
| 33 |
+
{%- set formatted_id = tool_call['id'] -%}
|
| 34 |
+
<|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|>
|
| 35 |
+
{%- endfor -%}
|
| 36 |
+
<|tool_calls_section_end|>
|
| 37 |
+
{%- elif message['role'] == 'tool' -%}
|
| 38 |
+
{%- set tool_call_id = message.tool_call_id -%}
|
| 39 |
+
## Return of {{ tool_call_id }}
|
| 40 |
+
{{render_content(message)}}
|
| 41 |
+
{%- elif message['content'] is not none -%}
|
| 42 |
+
{{render_content(message)}}
|
| 43 |
+
{%- endif -%}
|
| 44 |
+
<|im_end|>
|
| 45 |
+
{%- endfor -%}
|
| 46 |
+
{%- if add_generation_prompt -%}
|
| 47 |
+
<|im_assistant|>assistant<|im_middle|>
|
| 48 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"KimiLinearForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_kimi.KimiLinearConfig",
|
| 7 |
+
"AutoModel": "modeling_kimi.KimiLinearModel",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_kimi.KimiLinearForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 163584,
|
| 11 |
+
"dtype": "bfloat16",
|
| 12 |
+
"eos_token_id": 163586,
|
| 13 |
+
"first_k_dense_replace": 1,
|
| 14 |
+
"head_dim": 72,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 2304,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 9216,
|
| 19 |
+
"kv_lora_rank": 512,
|
| 20 |
+
"linear_attn_config": {
|
| 21 |
+
"full_attn_layers": [
|
| 22 |
+
4,
|
| 23 |
+
8,
|
| 24 |
+
12,
|
| 25 |
+
16,
|
| 26 |
+
20,
|
| 27 |
+
24,
|
| 28 |
+
27
|
| 29 |
+
],
|
| 30 |
+
"head_dim": 128,
|
| 31 |
+
"kda_layers": [
|
| 32 |
+
1,
|
| 33 |
+
2,
|
| 34 |
+
3,
|
| 35 |
+
5,
|
| 36 |
+
6,
|
| 37 |
+
7,
|
| 38 |
+
9,
|
| 39 |
+
10,
|
| 40 |
+
11,
|
| 41 |
+
13,
|
| 42 |
+
14,
|
| 43 |
+
15,
|
| 44 |
+
17,
|
| 45 |
+
18,
|
| 46 |
+
19,
|
| 47 |
+
21,
|
| 48 |
+
22,
|
| 49 |
+
23,
|
| 50 |
+
25,
|
| 51 |
+
26
|
| 52 |
+
],
|
| 53 |
+
"num_heads": 32,
|
| 54 |
+
"short_conv_kernel_size": 4
|
| 55 |
+
},
|
| 56 |
+
"mla_use_nope": true,
|
| 57 |
+
"model_max_length": 1048576,
|
| 58 |
+
"model_type": "kimi_linear",
|
| 59 |
+
"moe_intermediate_size": 1024,
|
| 60 |
+
"moe_layer_freq": 1,
|
| 61 |
+
"moe_renormalize": true,
|
| 62 |
+
"moe_router_activation_func": "sigmoid",
|
| 63 |
+
"num_attention_heads": 32,
|
| 64 |
+
"num_expert_group": 1,
|
| 65 |
+
"num_experts": 256,
|
| 66 |
+
"num_experts_per_token": 8,
|
| 67 |
+
"num_hidden_layers": 27,
|
| 68 |
+
"num_key_value_heads": 32,
|
| 69 |
+
"num_nextn_predict_layers": 0,
|
| 70 |
+
"num_shared_experts": 1,
|
| 71 |
+
"pad_token_id": 163839,
|
| 72 |
+
"q_lora_rank": null,
|
| 73 |
+
"qk_nope_head_dim": 128,
|
| 74 |
+
"qk_rope_head_dim": 64,
|
| 75 |
+
"rms_norm_eps": 1e-05,
|
| 76 |
+
"rope_scaling": null,
|
| 77 |
+
"rope_theta": 10000.0,
|
| 78 |
+
"routed_scaling_factor": 2.446,
|
| 79 |
+
"tie_word_embeddings": false,
|
| 80 |
+
"topk_group": 1,
|
| 81 |
+
"transformers_version": "4.57.1",
|
| 82 |
+
"use_cache": true,
|
| 83 |
+
"use_grouped_topk": true,
|
| 84 |
+
"v_head_dim": 128,
|
| 85 |
+
"vocab_size": 163840
|
| 86 |
+
}
|
configuration_kimi.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class KimiLinearConfig(PretrainedConfig):
|
| 8 |
+
model_type = "kimi_linear"
|
| 9 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model_type="kimi_linear",
|
| 14 |
+
vocab_size=163840,
|
| 15 |
+
hidden_size=4096,
|
| 16 |
+
head_dim=None,
|
| 17 |
+
intermediate_size=11008,
|
| 18 |
+
num_hidden_layers=32,
|
| 19 |
+
num_attention_heads=32,
|
| 20 |
+
num_key_value_heads=None,
|
| 21 |
+
hidden_act="silu",
|
| 22 |
+
initializer_range=0.02,
|
| 23 |
+
rms_norm_eps=1e-6,
|
| 24 |
+
use_cache=True,
|
| 25 |
+
pad_token_id=0,
|
| 26 |
+
bos_token_id=1,
|
| 27 |
+
eos_token_id=2,
|
| 28 |
+
rope_theta=10000.0,
|
| 29 |
+
rope_scaling=None,
|
| 30 |
+
tie_word_embeddings=False,
|
| 31 |
+
moe_intermediate_size: Optional[int] = None,
|
| 32 |
+
moe_renormalize: bool = True,
|
| 33 |
+
moe_router_activation_func: str = "sigmoid",
|
| 34 |
+
num_experts: Optional[int] = None,
|
| 35 |
+
num_experts_per_token: Optional[int] = None,
|
| 36 |
+
num_shared_experts: int = 0,
|
| 37 |
+
routed_scaling_factor: float = 1.0,
|
| 38 |
+
first_k_dense_replace: int = 0,
|
| 39 |
+
moe_layer_freq: int = 1,
|
| 40 |
+
use_grouped_topk: bool = True,
|
| 41 |
+
num_expert_group: int = 1,
|
| 42 |
+
topk_group: int = 1,
|
| 43 |
+
q_lora_rank: Optional[int] = None,
|
| 44 |
+
kv_lora_rank: Optional[int] = None,
|
| 45 |
+
qk_nope_head_dim: Optional[int] = None,
|
| 46 |
+
qk_rope_head_dim: Optional[int] = None,
|
| 47 |
+
v_head_dim: Optional[int] = None,
|
| 48 |
+
mla_use_nope: Optional[bool] = False,
|
| 49 |
+
num_nextn_predict_layers: int = 0,
|
| 50 |
+
linear_attn_config: Optional[dict] = None,
|
| 51 |
+
**kwargs,
|
| 52 |
+
):
|
| 53 |
+
self.model_type = model_type
|
| 54 |
+
self.vocab_size = vocab_size
|
| 55 |
+
self.hidden_size = hidden_size
|
| 56 |
+
self.head_dim = (
|
| 57 |
+
head_dim if head_dim is not None else hidden_size // num_attention_heads
|
| 58 |
+
)
|
| 59 |
+
self.intermediate_size = intermediate_size
|
| 60 |
+
self.num_hidden_layers = num_hidden_layers
|
| 61 |
+
self.num_attention_heads = num_attention_heads
|
| 62 |
+
|
| 63 |
+
# for backward compatibility
|
| 64 |
+
if num_key_value_heads is None:
|
| 65 |
+
num_key_value_heads = num_attention_heads
|
| 66 |
+
|
| 67 |
+
self.num_key_value_heads = num_key_value_heads
|
| 68 |
+
self.hidden_act = hidden_act
|
| 69 |
+
self.initializer_range = initializer_range
|
| 70 |
+
self.rms_norm_eps = rms_norm_eps
|
| 71 |
+
self.use_cache = use_cache
|
| 72 |
+
self.rope_theta = rope_theta
|
| 73 |
+
self.rope_scaling = rope_scaling
|
| 74 |
+
|
| 75 |
+
self.q_lora_rank = q_lora_rank
|
| 76 |
+
self.kv_lora_rank = kv_lora_rank
|
| 77 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
| 78 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
| 79 |
+
self.v_head_dim = v_head_dim
|
| 80 |
+
self.mla_use_nope = mla_use_nope
|
| 81 |
+
# moe config
|
| 82 |
+
self.num_experts = num_experts
|
| 83 |
+
self.num_experts_per_token = num_experts_per_token
|
| 84 |
+
self.moe_renormalize = moe_renormalize
|
| 85 |
+
self.num_shared_experts = num_shared_experts
|
| 86 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 87 |
+
self.moe_router_activation_func = moe_router_activation_func
|
| 88 |
+
assert self.moe_router_activation_func in ("softmax", "sigmoid")
|
| 89 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 90 |
+
self.first_k_dense_replace = first_k_dense_replace
|
| 91 |
+
self.moe_layer_freq = moe_layer_freq
|
| 92 |
+
self.use_grouped_topk = use_grouped_topk
|
| 93 |
+
self.num_expert_group = num_expert_group
|
| 94 |
+
self.topk_group = topk_group
|
| 95 |
+
self.num_nextn_predict_layers = num_nextn_predict_layers
|
| 96 |
+
|
| 97 |
+
if linear_attn_config is not None:
|
| 98 |
+
assert linear_attn_config["kda_layers"] is not None
|
| 99 |
+
assert linear_attn_config["full_attn_layers"] is not None
|
| 100 |
+
self.linear_attn_config = linear_attn_config
|
| 101 |
+
|
| 102 |
+
super().__init__(
|
| 103 |
+
pad_token_id=pad_token_id,
|
| 104 |
+
bos_token_id=bos_token_id,
|
| 105 |
+
eos_token_id=eos_token_id,
|
| 106 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 107 |
+
**kwargs,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
@property
|
| 111 |
+
def is_mla(self):
|
| 112 |
+
return (
|
| 113 |
+
self.q_lora_rank is not None
|
| 114 |
+
or self.kv_lora_rank is not None
|
| 115 |
+
or self.qk_nope_head_dim is not None
|
| 116 |
+
or self.qk_rope_head_dim is not None
|
| 117 |
+
or self.v_head_dim is not None
|
| 118 |
+
or self.mla_use_nope is True
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
@property
|
| 122 |
+
def is_moe(self):
|
| 123 |
+
return self.num_experts is not None
|
| 124 |
+
|
| 125 |
+
@property
|
| 126 |
+
def is_linear_attn(self) -> bool:
|
| 127 |
+
return not (
|
| 128 |
+
self.linear_attn_config is None
|
| 129 |
+
or (
|
| 130 |
+
isinstance(self.linear_attn_config, dict)
|
| 131 |
+
and self.linear_attn_config["kda_layers"] is not None
|
| 132 |
+
and len(self.linear_attn_config["kda_layers"]) == 0
|
| 133 |
+
)
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def is_kda_layer(self, layer_idx: int):
|
| 137 |
+
return (
|
| 138 |
+
self.linear_attn_config is not None
|
| 139 |
+
and (layer_idx + 1) in self.linear_attn_config["kda_layers"]
|
| 140 |
+
)
|
figures/arch.png
ADDED
|
Git LFS Details
|
figures/banner.png
ADDED
|
figures/logo.png
ADDED
|
figures/perf_speed.png
ADDED
|
Git LFS Details
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 163584,
|
| 4 |
+
"eos_token_id": 163586,
|
| 5 |
+
"pad_token_id": 163839,
|
| 6 |
+
"transformers_version": "4.57.1"
|
| 7 |
+
}
|
model-00001-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5c908aa3b86b6486080b577cb7aa8dbe9ca7cb18789653768017e602b61a7f
|
| 3 |
+
size 4999482712
|
model-00002-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6fcb34e9ebe2434f32761c06ef17a465157308e6e583eb7eb70cc25e57cd2cb0
|
| 3 |
+
size 4999923264
|
model-00003-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f35d2a95dd1e3170fd642d0db4d0d07933985ef59041494652092cc27893e231
|
| 3 |
+
size 4997138040
|
model-00004-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eda18b6226777bb9a07584dfa64986ac4f28a26cee3203f16ffb14deef9ef48b
|
| 3 |
+
size 4997148016
|
model-00005-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:652e8a43d493105176807d256af0a5c56e45c6d783e6c8221832918f3425c0a0
|
| 3 |
+
size 4999923296
|
model-00006-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77f5dc551436c934f0991eee0c319e0f33689ea3c10cb8cb8f48acc32238526f
|
| 3 |
+
size 4997138040
|
model-00007-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3980c7efccdc6a27633eb8909afc381cb780cccaa7be0347d1645496ea3eb5a2
|
| 3 |
+
size 4997148128
|
model-00008-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dab91b8eaed9874c75de99a4a08669f520fa3e2c8977175333db552504a1c5d3
|
| 3 |
+
size 4999924384
|
model-00009-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13f6ae84d557682ec4a0fc8b6090d4f89cdd26e5e216445cc9d77a65c7f4c90b
|
| 3 |
+
size 4997139104
|
model-00010-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d58ab0a201e26ff429b9d18678a76f3a3284ad977719e055f94d892133ee247b
|
| 3 |
+
size 4997149016
|
model-00011-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:142aa90317af104b2d9f5a6ae4dc661f4a7f7c152f83d6c2477de8037be92201
|
| 3 |
+
size 4999924408
|
model-00012-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb1d4fe2d94a04898eb8300b5144923e5540a75091ee5f4c8b67936a69d91780
|
| 3 |
+
size 4997139104
|
model-00013-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12fb6f2dea889d460f33f7fbb55f76d7beb468698cf56707f4d77a9ab69461d3
|
| 3 |
+
size 4997148992
|
model-00014-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf178169e0dfdc721492f1a98a5be2ef5f66fd8569039f5a77819641a5a1b32d
|
| 3 |
+
size 4999924440
|
model-00015-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e65460934e8794faeadd6d8cbeffd23fcdbf07d9c61ca92ef97afc95d0ccdaa
|
| 3 |
+
size 4997139104
|
model-00016-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:05cc77846f94d50dc09180f5844f01aee38e489b1fd833d8c7aec6a62214ef03
|
| 3 |
+
size 4997148960
|
model-00017-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eaf238a2f1a971ef311c445309de323992da59287d55759cf2a4a3a85ca6a1cc
|
| 3 |
+
size 4999924472
|
model-00018-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:315cdb6964a975522cdb755cf5eb76b46478346b015113e241f81127ad9e6fd4
|
| 3 |
+
size 4997139104
|
model-00019-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cbdc2c77e41baa76a2c2b3ced0a59fe7587e95ca3d1acc75247b88a80dee3041
|
| 3 |
+
size 4999934384
|
model-00020-of-00020.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f1e4a9194d045e01c90ed2697939bcedd533b6aa1f1b97b0ae0a5932e5a4bc7
|
| 3 |
+
size 3280687152
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_kimi.py
ADDED
|
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from collections.abc import Callable
|
| 3 |
+
from typing import Any, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import transformers
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from packaging import version
|
| 10 |
+
from torch import nn
|
| 11 |
+
from transformers.activations import ACT2FN
|
| 12 |
+
from transformers.cache_utils import Cache
|
| 13 |
+
from transformers.generation import GenerationMixin
|
| 14 |
+
from transformers.masking_utils import create_causal_mask
|
| 15 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 16 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
| 17 |
+
CausalLMOutputWithPast)
|
| 18 |
+
from transformers.modeling_utils import (ALL_ATTENTION_FUNCTIONS,
|
| 19 |
+
PreTrainedModel)
|
| 20 |
+
from transformers.processing_utils import Unpack
|
| 21 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 22 |
+
from transformers.utils import (TransformersKwargs, auto_docstring,
|
| 23 |
+
can_return_tuple, logging)
|
| 24 |
+
from transformers.utils.generic import OutputRecorder, check_model_inputs
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
from fla.layers.utils import get_unpad_data, index_first_axis, pad_input
|
| 28 |
+
from fla.modules import FusedRMSNormGated, ShortConvolution
|
| 29 |
+
from fla.ops.kda import chunk_kda, fused_recurrent_kda
|
| 30 |
+
from fla.ops.kda.gate import fused_kda_gate
|
| 31 |
+
except ImportError:
|
| 32 |
+
raise ImportError("Plese run `pip install -U fla-core`")
|
| 33 |
+
|
| 34 |
+
from .configuration_kimi import KimiLinearConfig
|
| 35 |
+
|
| 36 |
+
assert version.parse(transformers.__version__) >= version.parse("4.56.0"), \
|
| 37 |
+
"Please upgrade transformers to >= 4.56.0"
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class KimiDynamicCache:
|
| 43 |
+
"""
|
| 44 |
+
Dynamic cache for Kimi model.
|
| 45 |
+
Inspired by Qwen3-Next
|
| 46 |
+
"""
|
| 47 |
+
is_compileable = False
|
| 48 |
+
|
| 49 |
+
def __init__(self, config: KimiLinearConfig):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.config = config
|
| 52 |
+
|
| 53 |
+
if config.linear_attn_config is not None:
|
| 54 |
+
self.layer_types = []
|
| 55 |
+
for i in range(config.num_hidden_layers):
|
| 56 |
+
if config.is_kda_layer(i):
|
| 57 |
+
self.layer_types.append("linear_attention")
|
| 58 |
+
else:
|
| 59 |
+
self.layer_types.append("full_attention")
|
| 60 |
+
else:
|
| 61 |
+
self.layer_types = ["full_attention"] * config.num_hidden_layers
|
| 62 |
+
|
| 63 |
+
self.transformer_layers = [
|
| 64 |
+
i for i in range(config.num_hidden_layers) if self.layer_types[i] == "full_attention"
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
linear_layers = [i for i in range(
|
| 68 |
+
config.num_hidden_layers) if self.layer_types[i] == "linear_attention"]
|
| 69 |
+
self.last_linear_layer = linear_layers[-1] if linear_layers else -1
|
| 70 |
+
|
| 71 |
+
self.conv_states = [None for _ in range(config.num_hidden_layers)]
|
| 72 |
+
self.recurrent_states = [None for _ in range(config.num_hidden_layers)]
|
| 73 |
+
self.key_cache = [None for _ in range(config.num_hidden_layers)]
|
| 74 |
+
self.value_cache = [None for _ in range(config.num_hidden_layers)]
|
| 75 |
+
|
| 76 |
+
def __len__(self):
|
| 77 |
+
return len(self.layer_types)
|
| 78 |
+
|
| 79 |
+
def update(
|
| 80 |
+
self,
|
| 81 |
+
key_states: torch.Tensor,
|
| 82 |
+
value_states: torch.Tensor,
|
| 83 |
+
layer_idx: int,
|
| 84 |
+
cache_kwargs: Optional[dict[str, Any]] = None,
|
| 85 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 86 |
+
if self.key_cache[layer_idx] is None:
|
| 87 |
+
self.key_cache[layer_idx] = key_states
|
| 88 |
+
self.value_cache[layer_idx] = value_states
|
| 89 |
+
else:
|
| 90 |
+
self.key_cache[layer_idx] = torch.cat(
|
| 91 |
+
[self.key_cache[layer_idx], key_states], dim=2)
|
| 92 |
+
self.value_cache[layer_idx] = torch.cat(
|
| 93 |
+
[self.value_cache[layer_idx], value_states], dim=2)
|
| 94 |
+
|
| 95 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
| 96 |
+
|
| 97 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
| 98 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
| 99 |
+
for layer_idx in range(len(self.key_cache)):
|
| 100 |
+
if self.key_cache[layer_idx] is not None:
|
| 101 |
+
device = self.key_cache[layer_idx].device
|
| 102 |
+
beam_idx = beam_idx.to(device)
|
| 103 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(
|
| 104 |
+
0, beam_idx)
|
| 105 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(
|
| 106 |
+
0, beam_idx)
|
| 107 |
+
|
| 108 |
+
if self.conv_states[layer_idx] is not None:
|
| 109 |
+
device = self.conv_states[layer_idx][0].device
|
| 110 |
+
beam_idx = beam_idx.to(device)
|
| 111 |
+
q_conv, k_conv, v_conv = self.conv_states[layer_idx]
|
| 112 |
+
self.conv_states[layer_idx] = (
|
| 113 |
+
q_conv.index_select(0, beam_idx),
|
| 114 |
+
k_conv.index_select(0, beam_idx),
|
| 115 |
+
v_conv.index_select(0, beam_idx)
|
| 116 |
+
)
|
| 117 |
+
self.recurrent_states[layer_idx] = self.recurrent_states[layer_idx].index_select(
|
| 118 |
+
0, beam_idx)
|
| 119 |
+
|
| 120 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
| 121 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
| 122 |
+
# take any layer that contains cache and not empty tensor
|
| 123 |
+
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
|
| 124 |
+
if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx] is None:
|
| 125 |
+
return 0
|
| 126 |
+
return self.key_cache[layer_idx].shape[-2]
|
| 127 |
+
|
| 128 |
+
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
|
| 129 |
+
"""
|
| 130 |
+
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
|
| 131 |
+
the given layer at `layer_idx`.
|
| 132 |
+
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
|
| 133 |
+
"""
|
| 134 |
+
kv_offset = 0
|
| 135 |
+
query_length = cache_position.shape[0]
|
| 136 |
+
past_seen_tokens = self.get_seq_length(layer_idx)
|
| 137 |
+
kv_length = query_length + past_seen_tokens
|
| 138 |
+
return kv_length, kv_offset
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def has_previous_state(self):
|
| 142 |
+
"""We have a previous state if the last linear (conv) layer was already updated."""
|
| 143 |
+
if self.last_linear_layer == -1:
|
| 144 |
+
return False
|
| 145 |
+
return self.conv_states[self.last_linear_layer] is not None
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class KimiRMSNorm(nn.Module):
|
| 149 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 150 |
+
"""
|
| 151 |
+
KimiRMSNorm is equivalent to T5LayerNorm
|
| 152 |
+
"""
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 155 |
+
self.variance_epsilon = eps
|
| 156 |
+
|
| 157 |
+
def forward(self, hidden_states):
|
| 158 |
+
input_dtype = hidden_states.dtype
|
| 159 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 160 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 161 |
+
hidden_states = hidden_states * \
|
| 162 |
+
torch.rsqrt(variance + self.variance_epsilon)
|
| 163 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
ALL_LAYERNORM_LAYERS.append(KimiRMSNorm)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class KimiBlockSparseMLP(nn.Module):
|
| 170 |
+
def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.config = config
|
| 173 |
+
self.ffn_dim = config.intermediate_size if intermediate_size is None else intermediate_size
|
| 174 |
+
self.hidden_dim = config.hidden_size if hidden_size is None else hidden_size
|
| 175 |
+
|
| 176 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # gate
|
| 177 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) # down
|
| 178 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # up
|
| 179 |
+
|
| 180 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 181 |
+
|
| 182 |
+
def forward(self, hidden_states):
|
| 183 |
+
current_hidden_states = self.act_fn(
|
| 184 |
+
self.w1(hidden_states)) * self.w3(hidden_states)
|
| 185 |
+
current_hidden_states = self.w2(current_hidden_states)
|
| 186 |
+
return current_hidden_states
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class KimiMLP(nn.Module):
|
| 190 |
+
def __init__(self, config: KimiLinearConfig, hidden_size=None, intermediate_size=None):
|
| 191 |
+
super().__init__()
|
| 192 |
+
self.config = config
|
| 193 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
| 194 |
+
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
|
| 195 |
+
self.gate_proj = nn.Linear(
|
| 196 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
| 197 |
+
self.up_proj = nn.Linear(
|
| 198 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
| 199 |
+
self.down_proj = nn.Linear(
|
| 200 |
+
self.intermediate_size, self.hidden_size, bias=False)
|
| 201 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 202 |
+
|
| 203 |
+
def forward(self, x):
|
| 204 |
+
down_proj = self.down_proj(self.act_fn(
|
| 205 |
+
self.gate_proj(x)) * self.up_proj(x))
|
| 206 |
+
return down_proj
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 210 |
+
"""
|
| 211 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 212 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 213 |
+
"""
|
| 214 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 215 |
+
if n_rep == 1:
|
| 216 |
+
return hidden_states
|
| 217 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 218 |
+
batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 219 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def eager_attention_forward(
|
| 223 |
+
module: nn.Module,
|
| 224 |
+
query: torch.Tensor,
|
| 225 |
+
key: torch.Tensor,
|
| 226 |
+
value: torch.Tensor,
|
| 227 |
+
attention_mask: Optional[torch.Tensor],
|
| 228 |
+
scaling: float,
|
| 229 |
+
dropout: float = 0.0,
|
| 230 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 231 |
+
):
|
| 232 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 233 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 234 |
+
|
| 235 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 236 |
+
if attention_mask is not None:
|
| 237 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 238 |
+
attn_weights = attn_weights + causal_mask
|
| 239 |
+
|
| 240 |
+
attn_weights = nn.functional.softmax(
|
| 241 |
+
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 242 |
+
attn_weights = nn.functional.dropout(
|
| 243 |
+
attn_weights, p=dropout, training=module.training)
|
| 244 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 245 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 246 |
+
|
| 247 |
+
return attn_output, attn_weights
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class KimiMLAAttention(nn.Module):
|
| 251 |
+
"""
|
| 252 |
+
Multi-Latent Attention adapted from deepseek-v3
|
| 253 |
+
"""
|
| 254 |
+
|
| 255 |
+
def __init__(self, config: KimiLinearConfig, layer_idx: int):
|
| 256 |
+
nn.Module.__init__(self)
|
| 257 |
+
self.config = config
|
| 258 |
+
self.layer_idx = layer_idx
|
| 259 |
+
self.hidden_size = config.hidden_size
|
| 260 |
+
self.num_heads = config.num_attention_heads
|
| 261 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 262 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 263 |
+
|
| 264 |
+
self.rope_theta = config.rope_theta
|
| 265 |
+
self.attention_dropout = getattr(config, "attention_dropout", 0.0)
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
self.q_lora_rank = config.q_lora_rank
|
| 269 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
| 270 |
+
self.kv_lora_rank = config.kv_lora_rank
|
| 271 |
+
self.v_head_dim = config.v_head_dim
|
| 272 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
| 273 |
+
self.q_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
|
| 274 |
+
self.use_nope = config.mla_use_nope
|
| 275 |
+
self.scaling = self.q_head_dim ** (-0.5)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
raise ValueError(
|
| 278 |
+
f"Kimi MLA config is not found or not properly formatted: {e}")
|
| 279 |
+
|
| 280 |
+
assert self.q_lora_rank is None
|
| 281 |
+
self.q_proj = nn.Linear(
|
| 282 |
+
self.hidden_size, self.num_heads * self.q_head_dim, bias=False,
|
| 283 |
+
)
|
| 284 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
| 285 |
+
self.hidden_size,
|
| 286 |
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
| 287 |
+
bias=False,
|
| 288 |
+
)
|
| 289 |
+
self.kv_a_layernorm = KimiRMSNorm(self.kv_lora_rank)
|
| 290 |
+
self.kv_b_proj = nn.Linear(
|
| 291 |
+
self.kv_lora_rank,
|
| 292 |
+
self.num_heads
|
| 293 |
+
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
| 294 |
+
bias=False,
|
| 295 |
+
)
|
| 296 |
+
self.o_proj = nn.Linear(
|
| 297 |
+
self.num_heads * self.v_head_dim,
|
| 298 |
+
self.hidden_size,
|
| 299 |
+
bias=False,
|
| 300 |
+
)
|
| 301 |
+
self.is_causal = True
|
| 302 |
+
assert self.use_nope
|
| 303 |
+
|
| 304 |
+
def forward(
|
| 305 |
+
self,
|
| 306 |
+
hidden_states: torch.Tensor,
|
| 307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 308 |
+
past_key_values: Optional[Cache] = None,
|
| 309 |
+
**kwargs,
|
| 310 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 311 |
+
batch_size, seq_length = hidden_states.shape[:-1]
|
| 312 |
+
query_shape = (batch_size, seq_length, -1, self.q_head_dim)
|
| 313 |
+
key_shape = (batch_size, seq_length, -1,
|
| 314 |
+
self.qk_nope_head_dim + self.v_head_dim)
|
| 315 |
+
|
| 316 |
+
q_states = self.q_proj(hidden_states)
|
| 317 |
+
q_states = q_states.view(query_shape).transpose(1, 2)
|
| 318 |
+
q_pass, q_rot = torch.split(
|
| 319 |
+
q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
| 320 |
+
|
| 321 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
| 322 |
+
k_pass, k_rot = torch.split(
|
| 323 |
+
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
| 324 |
+
|
| 325 |
+
k_pass = self.kv_b_proj(self.kv_a_layernorm(
|
| 326 |
+
k_pass)).view(key_shape).transpose(1, 2)
|
| 327 |
+
k_pass, value_states = torch.split(
|
| 328 |
+
k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
| 329 |
+
|
| 330 |
+
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
|
| 331 |
+
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
|
| 332 |
+
|
| 333 |
+
query_states = torch.cat((q_pass, q_rot), dim=-1)
|
| 334 |
+
key_states = torch.cat((k_pass, k_rot), dim=-1)
|
| 335 |
+
|
| 336 |
+
if past_key_values is not None:
|
| 337 |
+
key_states, value_states = past_key_values.update(
|
| 338 |
+
key_states, value_states, self.layer_idx)
|
| 339 |
+
|
| 340 |
+
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
|
| 341 |
+
value_states = F.pad(
|
| 342 |
+
value_states, [0, self.q_head_dim - self.v_head_dim])
|
| 343 |
+
|
| 344 |
+
attention_interface: Callable = eager_attention_forward
|
| 345 |
+
if self.config._attn_implementation != "eager":
|
| 346 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 347 |
+
|
| 348 |
+
attn_output, _ = attention_interface(
|
| 349 |
+
self,
|
| 350 |
+
query_states,
|
| 351 |
+
key_states,
|
| 352 |
+
value_states,
|
| 353 |
+
attention_mask,
|
| 354 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 355 |
+
scaling=self.scaling,
|
| 356 |
+
**kwargs,
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim:
|
| 360 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
| 361 |
+
|
| 362 |
+
attn_output = attn_output.reshape(
|
| 363 |
+
batch_size, seq_length, -1).contiguous()
|
| 364 |
+
attn_output = self.o_proj(attn_output)
|
| 365 |
+
return attn_output
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class KimiDeltaAttention(nn.Module):
|
| 369 |
+
def __init__(self, config: KimiLinearConfig, layer_idx: int):
|
| 370 |
+
super().__init__()
|
| 371 |
+
self.config = config
|
| 372 |
+
self.mode = "chunk"
|
| 373 |
+
|
| 374 |
+
self.hidden_size = config.hidden_size
|
| 375 |
+
self.conv_size = config.linear_attn_config["short_conv_kernel_size"]
|
| 376 |
+
self.head_dim = config.linear_attn_config["head_dim"]
|
| 377 |
+
self.num_heads = config.linear_attn_config["num_heads"]
|
| 378 |
+
self.head_k_dim = self.head_dim
|
| 379 |
+
self.num_k_heads = self.num_heads
|
| 380 |
+
|
| 381 |
+
self.layer_idx = layer_idx
|
| 382 |
+
|
| 383 |
+
assert self.mode in [
|
| 384 |
+
'chunk', 'fused_recurrent'], f"Not suppoerted mode `{self.mode}`."
|
| 385 |
+
|
| 386 |
+
projection_k_size = self.head_k_dim * self.num_k_heads
|
| 387 |
+
projection_size = self.head_dim * self.num_heads
|
| 388 |
+
|
| 389 |
+
self.q_proj = nn.Linear(
|
| 390 |
+
self.hidden_size, projection_k_size, bias=False)
|
| 391 |
+
self.k_proj = nn.Linear(
|
| 392 |
+
self.hidden_size, projection_k_size, bias=False)
|
| 393 |
+
self.v_proj = nn.Linear(self.hidden_size, projection_size, bias=False)
|
| 394 |
+
|
| 395 |
+
self.q_conv1d = ShortConvolution(
|
| 396 |
+
hidden_size=projection_k_size,
|
| 397 |
+
kernel_size=self.conv_size,
|
| 398 |
+
activation='silu',
|
| 399 |
+
)
|
| 400 |
+
self.k_conv1d = ShortConvolution(
|
| 401 |
+
hidden_size=projection_k_size,
|
| 402 |
+
kernel_size=self.conv_size,
|
| 403 |
+
activation='silu'
|
| 404 |
+
)
|
| 405 |
+
self.v_conv1d = ShortConvolution(
|
| 406 |
+
hidden_size=projection_size,
|
| 407 |
+
kernel_size=self.conv_size,
|
| 408 |
+
activation='silu'
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
self.A_log = torch.nn.Parameter(torch.log(torch.empty(
|
| 412 |
+
self.num_heads, dtype=torch.float32).uniform_(1, 16)).view(1, 1, -1, 1))
|
| 413 |
+
|
| 414 |
+
self.f_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
|
| 415 |
+
self.f_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)
|
| 416 |
+
|
| 417 |
+
self.dt_bias = nn.Parameter(
|
| 418 |
+
torch.empty(projection_size, dtype=torch.float32))
|
| 419 |
+
|
| 420 |
+
self.b_proj = nn.Linear(self.hidden_size, self.num_heads, bias=False)
|
| 421 |
+
|
| 422 |
+
self.g_a_proj = nn.Linear(self.hidden_size, self.head_dim, bias=False)
|
| 423 |
+
self.g_b_proj = nn.Linear(self.head_dim, projection_size, bias=False)
|
| 424 |
+
|
| 425 |
+
self.o_norm = FusedRMSNormGated(
|
| 426 |
+
self.head_dim, eps=config.rms_norm_eps, activation='sigmoid')
|
| 427 |
+
self.o_proj = nn.Linear(projection_size, self.hidden_size, bias=False)
|
| 428 |
+
|
| 429 |
+
def forward(
|
| 430 |
+
self,
|
| 431 |
+
hidden_states: torch.Tensor,
|
| 432 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 433 |
+
cache_params: Optional[KimiDynamicCache] = None,
|
| 434 |
+
**kwargs: Unpack[dict]
|
| 435 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
| 436 |
+
if attention_mask is not None:
|
| 437 |
+
if attention_mask.dim() != 2:
|
| 438 |
+
attention_mask = kwargs.get("padding_mask", None)
|
| 439 |
+
|
| 440 |
+
if attention_mask is not None and attention_mask.dim() != 2:
|
| 441 |
+
raise ValueError(
|
| 442 |
+
"attention_mask must be a 0-1 matrix of shape [batch_size, seq_len] "
|
| 443 |
+
"(0 = padding). 3D masks are not supported here."
|
| 444 |
+
)
|
| 445 |
+
use_cache = cache_params is not None
|
| 446 |
+
batch_size, q_len, _ = hidden_states.shape
|
| 447 |
+
mode = 'fused_recurrent' if q_len <= 64 else self.mode
|
| 448 |
+
if self.training:
|
| 449 |
+
assert mode == 'chunk', "Only chunk mode is supported in training."
|
| 450 |
+
|
| 451 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
| 452 |
+
indices = None
|
| 453 |
+
if attention_mask is not None:
|
| 454 |
+
indices, cu_seqlens, _ = get_unpad_data(attention_mask[:, -q_len:])
|
| 455 |
+
hidden_states = index_first_axis(
|
| 456 |
+
rearrange(hidden_states, "b s ... -> (b s) ..."), indices).unsqueeze(0)
|
| 457 |
+
|
| 458 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
| 459 |
+
recurrent_state = None
|
| 460 |
+
if cache_params is not None:
|
| 461 |
+
if cache_params.conv_states[self.layer_idx] is not None:
|
| 462 |
+
conv_state_q, conv_state_k, conv_state_v = cache_params.conv_states[
|
| 463 |
+
self.layer_idx]
|
| 464 |
+
recurrent_state = cache_params.recurrent_states[self.layer_idx]
|
| 465 |
+
q, conv_state_q = self.q_conv1d(
|
| 466 |
+
x=self.q_proj(hidden_states),
|
| 467 |
+
cache=conv_state_q,
|
| 468 |
+
output_final_state=use_cache,
|
| 469 |
+
cu_seqlens=cu_seqlens
|
| 470 |
+
)
|
| 471 |
+
k, conv_state_k = self.k_conv1d(
|
| 472 |
+
x=self.k_proj(hidden_states),
|
| 473 |
+
cache=conv_state_k,
|
| 474 |
+
output_final_state=use_cache,
|
| 475 |
+
cu_seqlens=cu_seqlens
|
| 476 |
+
)
|
| 477 |
+
v, conv_state_v = self.v_conv1d(
|
| 478 |
+
x=self.v_proj(hidden_states),
|
| 479 |
+
cache=conv_state_v,
|
| 480 |
+
output_final_state=use_cache,
|
| 481 |
+
cu_seqlens=cu_seqlens
|
| 482 |
+
)
|
| 483 |
+
g = self.f_b_proj(self.f_a_proj(hidden_states))
|
| 484 |
+
g = fused_kda_gate(g, self.A_log, self.head_dim, g_bias=self.dt_bias)
|
| 485 |
+
beta = self.b_proj(hidden_states).float().sigmoid()
|
| 486 |
+
|
| 487 |
+
q, k = map(lambda x: rearrange(
|
| 488 |
+
x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
| 489 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
| 490 |
+
|
| 491 |
+
if mode == 'chunk':
|
| 492 |
+
o, recurrent_state = chunk_kda(
|
| 493 |
+
q=q,
|
| 494 |
+
k=k,
|
| 495 |
+
v=v,
|
| 496 |
+
g=g,
|
| 497 |
+
beta=beta,
|
| 498 |
+
initial_state=recurrent_state,
|
| 499 |
+
output_final_state=True,
|
| 500 |
+
use_qk_l2norm_in_kernel=True,
|
| 501 |
+
cu_seqlens=cu_seqlens,
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
o, recurrent_state = fused_recurrent_kda(
|
| 505 |
+
q=q,
|
| 506 |
+
k=k,
|
| 507 |
+
v=v,
|
| 508 |
+
g=g,
|
| 509 |
+
beta=beta,
|
| 510 |
+
initial_state=recurrent_state,
|
| 511 |
+
output_final_state=True,
|
| 512 |
+
use_qk_l2norm_in_kernel=True,
|
| 513 |
+
cu_seqlens=cu_seqlens,
|
| 514 |
+
)
|
| 515 |
+
if cache_params is not None:
|
| 516 |
+
cache_params.recurrent_states[self.layer_idx] = recurrent_state
|
| 517 |
+
cache_params.conv_states[self.layer_idx] = (
|
| 518 |
+
conv_state_q, conv_state_k, conv_state_v)
|
| 519 |
+
|
| 520 |
+
g = self.g_b_proj(self.g_a_proj(hidden_states))
|
| 521 |
+
g = rearrange(g, '... (h d) -> ... h d', d=self.head_dim)
|
| 522 |
+
o = self.o_norm(o, g)
|
| 523 |
+
|
| 524 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
| 525 |
+
o = self.o_proj(o)
|
| 526 |
+
if attention_mask is not None:
|
| 527 |
+
o = pad_input(o.squeeze(0), indices, batch_size, q_len)
|
| 528 |
+
|
| 529 |
+
return o
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
class KimiMoEGate(nn.Module):
|
| 533 |
+
"""
|
| 534 |
+
MoEGate adapted from Deepseek-V3.
|
| 535 |
+
Parameter correspondences:
|
| 536 |
+
num_experts -> n_routed_experts
|
| 537 |
+
num_experts_per_token -> num_experts_per_tok
|
| 538 |
+
num_expert_group -> n_group
|
| 539 |
+
moe_router_activation_func -> scoring_func
|
| 540 |
+
"""
|
| 541 |
+
|
| 542 |
+
def __init__(self, config: KimiLinearConfig):
|
| 543 |
+
super().__init__()
|
| 544 |
+
self.config = config
|
| 545 |
+
self.top_k = config.num_experts_per_token
|
| 546 |
+
self.num_experts = config.num_experts
|
| 547 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
| 548 |
+
self.moe_router_activation_func = config.moe_router_activation_func
|
| 549 |
+
self.num_expert_group = getattr(config, "num_expert_group", 1)
|
| 550 |
+
self.topk_group = getattr(config, "topk_group", 1)
|
| 551 |
+
|
| 552 |
+
# topk selection algorithm
|
| 553 |
+
self.moe_renormalize = config.moe_renormalize
|
| 554 |
+
self.gating_dim = config.hidden_size
|
| 555 |
+
self.weight = nn.Parameter(
|
| 556 |
+
torch.empty((self.num_experts, self.gating_dim))
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
self.e_score_correction_bias = nn.Parameter(
|
| 560 |
+
torch.empty((self.num_experts))
|
| 561 |
+
)
|
| 562 |
+
self.reset_parameters()
|
| 563 |
+
|
| 564 |
+
def reset_parameters(self) -> None:
|
| 565 |
+
import torch.nn.init as init
|
| 566 |
+
|
| 567 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 568 |
+
|
| 569 |
+
def forward(self, hidden_states):
|
| 570 |
+
bsz, seq_len, h = hidden_states.shape
|
| 571 |
+
# compute gating score
|
| 572 |
+
hidden_states = hidden_states.view(-1, h)
|
| 573 |
+
logits = F.linear(
|
| 574 |
+
hidden_states.type(torch.float32), self.weight.type(
|
| 575 |
+
torch.float32), None
|
| 576 |
+
)
|
| 577 |
+
if self.moe_router_activation_func == "sigmoid":
|
| 578 |
+
scores = logits.sigmoid()
|
| 579 |
+
elif self.moe_router_activation_func == "softmax":
|
| 580 |
+
scores = logits.softmax(dim=1)
|
| 581 |
+
else:
|
| 582 |
+
raise NotImplementedError(
|
| 583 |
+
f"insupportable scoring function for MoE gating: {self.moe_router_activation_func}"
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# select top-k experts
|
| 587 |
+
assert not self.training
|
| 588 |
+
scores_for_choice = scores.view(bsz * seq_len, -1)
|
| 589 |
+
scores_for_choice += self.e_score_correction_bias.unsqueeze(0)
|
| 590 |
+
group_scores = (
|
| 591 |
+
scores_for_choice.view(
|
| 592 |
+
bsz * seq_len, self.num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
|
| 593 |
+
) # [n, num_expert_group]
|
| 594 |
+
group_idx = torch.topk(
|
| 595 |
+
group_scores, k=self.topk_group, dim=-1, sorted=False
|
| 596 |
+
)[
|
| 597 |
+
1
|
| 598 |
+
] # [n, top_k_group]
|
| 599 |
+
group_mask = torch.zeros_like(group_scores) # [n, num_expert_group]
|
| 600 |
+
group_mask.scatter_(1, group_idx, 1) # [n, num_expert_group]
|
| 601 |
+
score_mask = (
|
| 602 |
+
group_mask.unsqueeze(-1)
|
| 603 |
+
.expand(
|
| 604 |
+
bsz * seq_len, self.num_expert_group, self.num_experts // self.num_expert_group
|
| 605 |
+
)
|
| 606 |
+
.reshape(bsz * seq_len, -1)
|
| 607 |
+
) # [n, e]
|
| 608 |
+
tmp_scores = scores_for_choice.masked_fill(
|
| 609 |
+
~score_mask.bool(), 0.0) # [n, e]
|
| 610 |
+
_, topk_idx = torch.topk(
|
| 611 |
+
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
| 612 |
+
)
|
| 613 |
+
topk_weight = scores.gather(1, topk_idx)
|
| 614 |
+
|
| 615 |
+
# norm gate to sum 1
|
| 616 |
+
if self.top_k > 1 and self.moe_renormalize:
|
| 617 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
| 618 |
+
topk_weight = topk_weight / denominator
|
| 619 |
+
# must multiply the scaling factor
|
| 620 |
+
topk_weight = topk_weight * self.routed_scaling_factor
|
| 621 |
+
|
| 622 |
+
return topk_idx, topk_weight
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
class KimiSparseMoeBlock(nn.Module):
|
| 626 |
+
"""
|
| 627 |
+
Adapted from Deepseek-V3's MOE implementation
|
| 628 |
+
The namings are consistent with Kimi's version.
|
| 629 |
+
"""
|
| 630 |
+
|
| 631 |
+
def __init__(self, config: KimiLinearConfig):
|
| 632 |
+
super().__init__()
|
| 633 |
+
self.config = config
|
| 634 |
+
self.hidden_dim = config.hidden_size
|
| 635 |
+
self.num_experts = config.num_experts
|
| 636 |
+
self.top_k = config.num_experts_per_token
|
| 637 |
+
self.moe_renormalize = config.moe_renormalize
|
| 638 |
+
|
| 639 |
+
self.ep_size = 1
|
| 640 |
+
self.experts_per_rank = config.num_experts
|
| 641 |
+
self.ep_rank = 0
|
| 642 |
+
self.experts = nn.ModuleList(
|
| 643 |
+
[
|
| 644 |
+
KimiBlockSparseMLP(
|
| 645 |
+
config, intermediate_size=config.moe_intermediate_size
|
| 646 |
+
)
|
| 647 |
+
for _ in range(config.num_experts)
|
| 648 |
+
]
|
| 649 |
+
)
|
| 650 |
+
self.gate = KimiMoEGate(config)
|
| 651 |
+
if config.num_shared_experts is not None:
|
| 652 |
+
intermediate_size = config.moe_intermediate_size * config.num_shared_experts
|
| 653 |
+
self.shared_experts = KimiMLP(
|
| 654 |
+
config=config, intermediate_size=intermediate_size
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
def forward(self, hidden_states):
|
| 658 |
+
identity = hidden_states
|
| 659 |
+
orig_shape = hidden_states.shape
|
| 660 |
+
topk_idx, topk_weight = self.gate(hidden_states)
|
| 661 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
| 662 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 663 |
+
if not self.training:
|
| 664 |
+
y = self.moe_infer(hidden_states, topk_idx,
|
| 665 |
+
topk_weight).view(*orig_shape)
|
| 666 |
+
else:
|
| 667 |
+
raise NotImplementedError(
|
| 668 |
+
"Training mode is not supported in KimiSparseMoeBlock")
|
| 669 |
+
if self.config.num_shared_experts is not None:
|
| 670 |
+
y = y + self.shared_experts(identity)
|
| 671 |
+
return y
|
| 672 |
+
|
| 673 |
+
@torch.no_grad()
|
| 674 |
+
def moe_infer(self, x, topk_ids, topk_weight):
|
| 675 |
+
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
| 676 |
+
cnts.scatter_(1, topk_ids, 1)
|
| 677 |
+
tokens_per_expert = cnts.sum(dim=0)
|
| 678 |
+
idxs = topk_ids.view(-1).argsort()
|
| 679 |
+
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
| 680 |
+
|
| 681 |
+
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
| 682 |
+
|
| 683 |
+
outputs = []
|
| 684 |
+
start_idx = 0
|
| 685 |
+
for i, num_tokens in enumerate(tokens_per_expert):
|
| 686 |
+
end_idx = start_idx + num_tokens
|
| 687 |
+
if num_tokens == 0:
|
| 688 |
+
continue
|
| 689 |
+
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
| 690 |
+
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
| 691 |
+
expert_out = expert(tokens_for_this_expert)
|
| 692 |
+
outputs.append(expert_out)
|
| 693 |
+
start_idx = end_idx
|
| 694 |
+
|
| 695 |
+
outs = torch.cat(outputs, dim=0) if len(
|
| 696 |
+
outputs) else sorted_tokens.new_empty(0)
|
| 697 |
+
|
| 698 |
+
new_x = torch.empty_like(outs)
|
| 699 |
+
new_x[idxs] = outs
|
| 700 |
+
final_out = (
|
| 701 |
+
new_x.view(*topk_ids.shape, -1)
|
| 702 |
+
.type(topk_weight.dtype)
|
| 703 |
+
.mul_(topk_weight.unsqueeze(dim=-1))
|
| 704 |
+
.sum(dim=1)
|
| 705 |
+
.type(new_x.dtype)
|
| 706 |
+
)
|
| 707 |
+
return final_out
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
class KimiDecoderLayer(nn.Module):
|
| 711 |
+
def __init__(self, config: KimiLinearConfig, layer_idx: int):
|
| 712 |
+
super().__init__()
|
| 713 |
+
self.hidden_size = config.hidden_size
|
| 714 |
+
self.config = config
|
| 715 |
+
if config.is_kda_layer(layer_idx):
|
| 716 |
+
self.is_linear_attn = True
|
| 717 |
+
self.self_attn = KimiDeltaAttention(
|
| 718 |
+
config=config, layer_idx=layer_idx)
|
| 719 |
+
elif config.is_mla:
|
| 720 |
+
self.is_linear_attn = False
|
| 721 |
+
self.self_attn = KimiMLAAttention(
|
| 722 |
+
config=config, layer_idx=layer_idx)
|
| 723 |
+
else:
|
| 724 |
+
raise NotImplementedError
|
| 725 |
+
if (
|
| 726 |
+
config.num_experts is not None
|
| 727 |
+
and layer_idx >= config.first_k_dense_replace
|
| 728 |
+
and layer_idx % getattr(config, "moe_layer_freq", 1) == 0
|
| 729 |
+
):
|
| 730 |
+
self.block_sparse_moe = KimiSparseMoeBlock(config)
|
| 731 |
+
else:
|
| 732 |
+
self.mlp = KimiMLP(config)
|
| 733 |
+
self.input_layernorm = KimiRMSNorm(
|
| 734 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
| 735 |
+
self.post_attention_layernorm = KimiRMSNorm(
|
| 736 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
| 737 |
+
|
| 738 |
+
def forward(
|
| 739 |
+
self,
|
| 740 |
+
hidden_states: torch.Tensor,
|
| 741 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 742 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 743 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 744 |
+
output_attentions: Optional[bool] = False,
|
| 745 |
+
use_cache: Optional[bool] = False,
|
| 746 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 747 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 748 |
+
"""
|
| 749 |
+
Args:
|
| 750 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 751 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 752 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 753 |
+
output_attentions (`bool`, *optional*):
|
| 754 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 755 |
+
returned tensors for more detail.
|
| 756 |
+
use_cache (`bool`, *optional*):
|
| 757 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 758 |
+
(see `past_key_values`).
|
| 759 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 760 |
+
"""
|
| 761 |
+
|
| 762 |
+
residual = hidden_states
|
| 763 |
+
|
| 764 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 765 |
+
|
| 766 |
+
# Self Attention
|
| 767 |
+
if self.is_linear_attn is False:
|
| 768 |
+
hidden_states = self.self_attn(
|
| 769 |
+
hidden_states=hidden_states,
|
| 770 |
+
attention_mask=attention_mask,
|
| 771 |
+
position_ids=position_ids,
|
| 772 |
+
past_key_values=past_key_values,
|
| 773 |
+
output_attentions=output_attentions,
|
| 774 |
+
use_cache=use_cache,
|
| 775 |
+
**kwargs,
|
| 776 |
+
)
|
| 777 |
+
else:
|
| 778 |
+
hidden_states = self.self_attn(
|
| 779 |
+
hidden_states=hidden_states,
|
| 780 |
+
attention_mask=attention_mask,
|
| 781 |
+
cache_params=past_key_values,
|
| 782 |
+
output_attentions=output_attentions,
|
| 783 |
+
use_cache=use_cache,
|
| 784 |
+
**kwargs,
|
| 785 |
+
)
|
| 786 |
+
hidden_states = residual + hidden_states
|
| 787 |
+
|
| 788 |
+
# Fully Connected
|
| 789 |
+
residual = hidden_states
|
| 790 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 791 |
+
if hasattr(self, "block_sparse_moe"):
|
| 792 |
+
hidden_states = self.block_sparse_moe(hidden_states)
|
| 793 |
+
else:
|
| 794 |
+
hidden_states = self.mlp(hidden_states)
|
| 795 |
+
hidden_states = residual + hidden_states
|
| 796 |
+
|
| 797 |
+
return hidden_states
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
class KimiPreTrainedModel(PreTrainedModel):
|
| 801 |
+
config_class = KimiLinearConfig
|
| 802 |
+
base_model_prefix = "model"
|
| 803 |
+
supports_gradient_checkpointing = True
|
| 804 |
+
_no_split_modules = ["KimiDecoderLayer"]
|
| 805 |
+
_skip_keys_device_placement = "past_key_values"
|
| 806 |
+
_supports_flash_attn_2 = True
|
| 807 |
+
_can_record_outputs = {
|
| 808 |
+
"router_logits": OutputRecorder(KimiBlockSparseMLP, index=1),
|
| 809 |
+
"hidden_states": KimiDecoderLayer,
|
| 810 |
+
"attentions": KimiMLAAttention,
|
| 811 |
+
}
|
| 812 |
+
_is_stateful = True
|
| 813 |
+
|
| 814 |
+
def _init_weights(self, module):
|
| 815 |
+
std = self.config.initializer_range
|
| 816 |
+
if isinstance(module, nn.Linear):
|
| 817 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 818 |
+
if module.bias is not None:
|
| 819 |
+
module.bias.data.zero_()
|
| 820 |
+
elif isinstance(module, nn.Embedding):
|
| 821 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 822 |
+
if module.padding_idx is not None:
|
| 823 |
+
module.weight.data[module.padding_idx].zero_()
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
class KimiLinearModel(KimiPreTrainedModel):
|
| 827 |
+
def __init__(self, config: KimiLinearConfig):
|
| 828 |
+
super().__init__(config)
|
| 829 |
+
self.padding_idx = config.pad_token_id
|
| 830 |
+
self.vocab_size = config.vocab_size
|
| 831 |
+
|
| 832 |
+
self.embed_tokens = nn.Embedding(
|
| 833 |
+
config.vocab_size, config.hidden_size, self.padding_idx)
|
| 834 |
+
self.layers = nn.ModuleList([KimiDecoderLayer(
|
| 835 |
+
config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 836 |
+
self.norm = KimiRMSNorm(
|
| 837 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
| 838 |
+
|
| 839 |
+
if getattr(config, "_attn_implementation", None) is not None:
|
| 840 |
+
if config._attn_implementation != "flash_attention_2":
|
| 841 |
+
logger.warning_once(
|
| 842 |
+
f"Ignoring the provided attention implementation {config._attn_implementation}")
|
| 843 |
+
logger.warning_once("Using flash_attention_2 backend instead.")
|
| 844 |
+
config._attn_implementation = "flash_attention_2"
|
| 845 |
+
else:
|
| 846 |
+
config._attn_implementation = "flash_attention_2"
|
| 847 |
+
|
| 848 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 849 |
+
self.gradient_checkpointing = False
|
| 850 |
+
# Initialize weights and apply final processing
|
| 851 |
+
self.post_init()
|
| 852 |
+
|
| 853 |
+
def _update_linear_attn_mask(self, attention_mask, cache_position):
|
| 854 |
+
"""
|
| 855 |
+
NOTE: Left-padding is used for linear attention mask.
|
| 856 |
+
No need for zeroing states when
|
| 857 |
+
1. Cached forward
|
| 858 |
+
2. Attending to all inputs
|
| 859 |
+
"""
|
| 860 |
+
linear_attn_mask = attention_mask
|
| 861 |
+
if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
|
| 862 |
+
linear_attn_mask = None
|
| 863 |
+
return linear_attn_mask
|
| 864 |
+
|
| 865 |
+
@check_model_inputs
|
| 866 |
+
@auto_docstring
|
| 867 |
+
def forward(
|
| 868 |
+
self,
|
| 869 |
+
input_ids: torch.LongTensor = None,
|
| 870 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 871 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 872 |
+
past_key_values: Optional[Cache] = None,
|
| 873 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 874 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 875 |
+
use_cache: Optional[bool] = None,
|
| 876 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 877 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 878 |
+
|
| 879 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 880 |
+
|
| 881 |
+
if (input_ids is None) and (inputs_embeds is None):
|
| 882 |
+
raise ValueError(
|
| 883 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
| 884 |
+
|
| 885 |
+
# Get inputs_embeds
|
| 886 |
+
if inputs_embeds is None:
|
| 887 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 888 |
+
|
| 889 |
+
if use_cache and past_key_values is None:
|
| 890 |
+
past_key_values = KimiDynamicCache(config=self.config)
|
| 891 |
+
|
| 892 |
+
if cache_position is None:
|
| 893 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
| 894 |
+
) if past_key_values is not None else 0
|
| 895 |
+
cache_position: torch.Tensor = torch.arange(
|
| 896 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 897 |
+
)
|
| 898 |
+
|
| 899 |
+
if position_ids is None:
|
| 900 |
+
position_ids = cache_position.unsqueeze(0)
|
| 901 |
+
|
| 902 |
+
causal_mask = create_causal_mask(
|
| 903 |
+
config=self.config,
|
| 904 |
+
input_embeds=inputs_embeds,
|
| 905 |
+
attention_mask=attention_mask,
|
| 906 |
+
cache_position=cache_position,
|
| 907 |
+
past_key_values=past_key_values,
|
| 908 |
+
position_ids=position_ids,
|
| 909 |
+
)
|
| 910 |
+
linear_attn_mask = self._update_linear_attn_mask(
|
| 911 |
+
attention_mask, cache_position)
|
| 912 |
+
|
| 913 |
+
hidden_states = inputs_embeds
|
| 914 |
+
if past_key_values is not None:
|
| 915 |
+
assert isinstance(past_key_values, KimiDynamicCache)
|
| 916 |
+
|
| 917 |
+
for decoder_layer in self.layers:
|
| 918 |
+
layer_mask = linear_attn_mask if decoder_layer.is_linear_attn else causal_mask
|
| 919 |
+
|
| 920 |
+
hidden_states = decoder_layer(
|
| 921 |
+
hidden_states,
|
| 922 |
+
attention_mask=layer_mask,
|
| 923 |
+
past_key_values=past_key_values,
|
| 924 |
+
cache_position=cache_position,
|
| 925 |
+
**kwargs,
|
| 926 |
+
)
|
| 927 |
+
|
| 928 |
+
hidden_states = self.norm(hidden_states)
|
| 929 |
+
|
| 930 |
+
return BaseModelOutputWithPast(
|
| 931 |
+
last_hidden_state=hidden_states,
|
| 932 |
+
past_key_values=past_key_values,
|
| 933 |
+
)
|
| 934 |
+
|
| 935 |
+
|
| 936 |
+
class KimiLinearForCausalLM(KimiPreTrainedModel, GenerationMixin):
|
| 937 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 938 |
+
|
| 939 |
+
def __init__(self, config):
|
| 940 |
+
super().__init__(config)
|
| 941 |
+
self.model = KimiLinearModel(config)
|
| 942 |
+
self.vocab_size = config.vocab_size
|
| 943 |
+
self.lm_head = nn.Linear(
|
| 944 |
+
config.hidden_size, config.vocab_size, bias=False)
|
| 945 |
+
|
| 946 |
+
# Initialize weights and apply final processing
|
| 947 |
+
self.post_init()
|
| 948 |
+
|
| 949 |
+
@can_return_tuple
|
| 950 |
+
@auto_docstring
|
| 951 |
+
def forward(
|
| 952 |
+
self,
|
| 953 |
+
input_ids: torch.LongTensor = None,
|
| 954 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 955 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 956 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 957 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 958 |
+
labels: Optional[torch.LongTensor] = None,
|
| 959 |
+
use_cache: Optional[bool] = None,
|
| 960 |
+
output_attentions: Optional[bool] = None,
|
| 961 |
+
output_hidden_states: Optional[bool] = None,
|
| 962 |
+
generation_mode: Optional[bool] = None,
|
| 963 |
+
return_dict: Optional[bool] = None,
|
| 964 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 965 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 966 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 967 |
+
r"""
|
| 968 |
+
Args:
|
| 969 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 970 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 971 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 972 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 973 |
+
|
| 974 |
+
Returns:
|
| 975 |
+
|
| 976 |
+
Example:
|
| 977 |
+
|
| 978 |
+
```python
|
| 979 |
+
>>> from transformers import AutoTokenizer, KimiLinearForCausalLM
|
| 980 |
+
|
| 981 |
+
>>> model = KimiLinearForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 982 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 983 |
+
|
| 984 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 985 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 986 |
+
|
| 987 |
+
>>> # Generate
|
| 988 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 989 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 990 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 991 |
+
```"""
|
| 992 |
+
|
| 993 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 994 |
+
output_hidden_states = (
|
| 995 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 996 |
+
)
|
| 997 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 998 |
+
|
| 999 |
+
outputs = self.model(
|
| 1000 |
+
input_ids=input_ids,
|
| 1001 |
+
attention_mask=attention_mask,
|
| 1002 |
+
position_ids=position_ids,
|
| 1003 |
+
past_key_values=past_key_values,
|
| 1004 |
+
inputs_embeds=inputs_embeds,
|
| 1005 |
+
use_cache=use_cache,
|
| 1006 |
+
output_attentions=output_attentions,
|
| 1007 |
+
output_hidden_states=output_hidden_states,
|
| 1008 |
+
return_dict=return_dict,
|
| 1009 |
+
cache_position=cache_position,
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
logits = outputs[0]
|
| 1013 |
+
if generation_mode:
|
| 1014 |
+
logits = logits[:, -1:]
|
| 1015 |
+
logits = self.lm_head(logits)
|
| 1016 |
+
|
| 1017 |
+
loss = None
|
| 1018 |
+
if labels is not None:
|
| 1019 |
+
loss = self.loss_function(
|
| 1020 |
+
logits, labels, self.vocab_size, **kwargs)
|
| 1021 |
+
|
| 1022 |
+
return CausalLMOutputWithPast(
|
| 1023 |
+
loss=loss,
|
| 1024 |
+
logits=logits,
|
| 1025 |
+
past_key_values=outputs.past_key_values,
|
| 1026 |
+
hidden_states=outputs.hidden_states,
|
| 1027 |
+
attentions=outputs.attentions,
|
| 1028 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"[extra_id_0]",
|
| 4 |
+
"[extra_id_1]",
|
| 5 |
+
"[extra_id_2]",
|
| 6 |
+
"[extra_id_3]",
|
| 7 |
+
"[start_header_id]",
|
| 8 |
+
"[end_header_id]",
|
| 9 |
+
"[extra_id_4]",
|
| 10 |
+
"[EOT]",
|
| 11 |
+
"[extra_id_5]",
|
| 12 |
+
"[extra_id_6]",
|
| 13 |
+
"[extra_id_7]",
|
| 14 |
+
"[extra_id_8]",
|
| 15 |
+
"[extra_id_9]",
|
| 16 |
+
"[extra_id_10]",
|
| 17 |
+
"[extra_id_11]",
|
| 18 |
+
"[extra_id_12]",
|
| 19 |
+
"[extra_id_13]",
|
| 20 |
+
"[extra_id_14]",
|
| 21 |
+
"[extra_id_15]",
|
| 22 |
+
"[extra_id_16]",
|
| 23 |
+
"[extra_id_17]",
|
| 24 |
+
"[extra_id_18]",
|
| 25 |
+
"[extra_id_19]",
|
| 26 |
+
"[extra_id_20]",
|
| 27 |
+
"[extra_id_21]",
|
| 28 |
+
"[extra_id_22]",
|
| 29 |
+
"[extra_id_23]",
|
| 30 |
+
"[extra_id_24]",
|
| 31 |
+
"[extra_id_25]",
|
| 32 |
+
"[extra_id_26]",
|
| 33 |
+
"[extra_id_27]",
|
| 34 |
+
"[extra_id_28]",
|
| 35 |
+
"[extra_id_29]",
|
| 36 |
+
"[extra_id_30]",
|
| 37 |
+
"[extra_id_31]",
|
| 38 |
+
"[extra_id_32]",
|
| 39 |
+
"[extra_id_33]",
|
| 40 |
+
"[extra_id_34]",
|
| 41 |
+
"[extra_id_35]",
|
| 42 |
+
"[extra_id_36]",
|
| 43 |
+
"[extra_id_37]",
|
| 44 |
+
"[extra_id_38]",
|
| 45 |
+
"[extra_id_39]",
|
| 46 |
+
"[extra_id_40]",
|
| 47 |
+
"[extra_id_41]",
|
| 48 |
+
"[extra_id_42]",
|
| 49 |
+
"[extra_id_43]",
|
| 50 |
+
"[extra_id_44]",
|
| 51 |
+
"[extra_id_45]",
|
| 52 |
+
"[extra_id_46]",
|
| 53 |
+
"[extra_id_47]",
|
| 54 |
+
"[extra_id_48]",
|
| 55 |
+
"[extra_id_49]",
|
| 56 |
+
"[extra_id_50]",
|
| 57 |
+
"[extra_id_51]",
|
| 58 |
+
"[extra_id_52]",
|
| 59 |
+
"[extra_id_53]",
|
| 60 |
+
"[extra_id_54]",
|
| 61 |
+
"[extra_id_55]",
|
| 62 |
+
"[extra_id_56]",
|
| 63 |
+
"[extra_id_57]",
|
| 64 |
+
"[extra_id_58]",
|
| 65 |
+
"[extra_id_59]",
|
| 66 |
+
"[extra_id_60]",
|
| 67 |
+
"[extra_id_61]",
|
| 68 |
+
"[extra_id_62]",
|
| 69 |
+
"[extra_id_63]",
|
| 70 |
+
"[extra_id_64]",
|
| 71 |
+
"[extra_id_65]",
|
| 72 |
+
"[extra_id_66]",
|
| 73 |
+
"[extra_id_67]",
|
| 74 |
+
"[extra_id_68]",
|
| 75 |
+
"[extra_id_69]",
|
| 76 |
+
"[extra_id_70]",
|
| 77 |
+
"[extra_id_71]",
|
| 78 |
+
"[extra_id_72]",
|
| 79 |
+
"[extra_id_73]",
|
| 80 |
+
"[extra_id_74]",
|
| 81 |
+
"[extra_id_75]",
|
| 82 |
+
"[extra_id_76]",
|
| 83 |
+
"[extra_id_77]",
|
| 84 |
+
"[extra_id_78]",
|
| 85 |
+
"[extra_id_79]",
|
| 86 |
+
"[extra_id_80]",
|
| 87 |
+
"[extra_id_81]",
|
| 88 |
+
"[extra_id_82]",
|
| 89 |
+
"[extra_id_83]",
|
| 90 |
+
"[extra_id_84]",
|
| 91 |
+
"[extra_id_85]",
|
| 92 |
+
"[extra_id_86]",
|
| 93 |
+
"[extra_id_87]",
|
| 94 |
+
"[extra_id_88]",
|
| 95 |
+
"[extra_id_89]",
|
| 96 |
+
"[extra_id_90]",
|
| 97 |
+
"[extra_id_91]",
|
| 98 |
+
"[extra_id_92]",
|
| 99 |
+
"[extra_id_93]",
|
| 100 |
+
"[extra_id_94]",
|
| 101 |
+
"[extra_id_95]",
|
| 102 |
+
"[extra_id_96]",
|
| 103 |
+
"[extra_id_97]",
|
| 104 |
+
"[extra_id_98]",
|
| 105 |
+
"[extra_id_99]",
|
| 106 |
+
"[extra_id_100]",
|
| 107 |
+
"[extra_id_101]",
|
| 108 |
+
"[extra_id_102]",
|
| 109 |
+
"[extra_id_103]",
|
| 110 |
+
"[extra_id_104]",
|
| 111 |
+
"[extra_id_105]",
|
| 112 |
+
"[extra_id_106]",
|
| 113 |
+
"[extra_id_107]",
|
| 114 |
+
"[extra_id_108]",
|
| 115 |
+
"[extra_id_109]",
|
| 116 |
+
"[extra_id_110]",
|
| 117 |
+
"[extra_id_111]",
|
| 118 |
+
"[extra_id_112]",
|
| 119 |
+
"[extra_id_113]",
|
| 120 |
+
"[extra_id_114]",
|
| 121 |
+
"[extra_id_115]",
|
| 122 |
+
"[extra_id_116]",
|
| 123 |
+
"[extra_id_117]",
|
| 124 |
+
"[extra_id_118]",
|
| 125 |
+
"[extra_id_119]",
|
| 126 |
+
"[extra_id_120]",
|
| 127 |
+
"[extra_id_121]",
|
| 128 |
+
"[extra_id_122]",
|
| 129 |
+
"[extra_id_123]",
|
| 130 |
+
"[extra_id_124]",
|
| 131 |
+
"[extra_id_125]",
|
| 132 |
+
"[extra_id_126]",
|
| 133 |
+
"[extra_id_127]",
|
| 134 |
+
"[extra_id_128]",
|
| 135 |
+
"[extra_id_129]",
|
| 136 |
+
"[extra_id_130]",
|
| 137 |
+
"[extra_id_131]",
|
| 138 |
+
"[extra_id_132]",
|
| 139 |
+
"[extra_id_133]",
|
| 140 |
+
"[extra_id_134]",
|
| 141 |
+
"[extra_id_135]",
|
| 142 |
+
"[extra_id_136]",
|
| 143 |
+
"[extra_id_137]",
|
| 144 |
+
"[extra_id_138]",
|
| 145 |
+
"[extra_id_139]",
|
| 146 |
+
"[extra_id_140]",
|
| 147 |
+
"[extra_id_141]",
|
| 148 |
+
"[extra_id_142]",
|
| 149 |
+
"[extra_id_143]",
|
| 150 |
+
"[extra_id_144]",
|
| 151 |
+
"[extra_id_145]",
|
| 152 |
+
"[extra_id_146]",
|
| 153 |
+
"[extra_id_147]",
|
| 154 |
+
"[extra_id_148]",
|
| 155 |
+
"[extra_id_149]",
|
| 156 |
+
"[extra_id_150]",
|
| 157 |
+
"[extra_id_151]",
|
| 158 |
+
"[extra_id_152]",
|
| 159 |
+
"[extra_id_153]",
|
| 160 |
+
"[extra_id_154]",
|
| 161 |
+
"[extra_id_155]",
|
| 162 |
+
"[extra_id_156]",
|
| 163 |
+
"[extra_id_157]",
|
| 164 |
+
"[extra_id_158]",
|
| 165 |
+
"[extra_id_159]",
|
| 166 |
+
"[extra_id_160]",
|
| 167 |
+
"[extra_id_161]",
|
| 168 |
+
"[extra_id_162]",
|
| 169 |
+
"[extra_id_163]",
|
| 170 |
+
"[extra_id_164]",
|
| 171 |
+
"[extra_id_165]",
|
| 172 |
+
"[extra_id_166]",
|
| 173 |
+
"[extra_id_167]",
|
| 174 |
+
"[extra_id_168]",
|
| 175 |
+
"[extra_id_169]",
|
| 176 |
+
"[extra_id_170]",
|
| 177 |
+
"[extra_id_171]",
|
| 178 |
+
"[extra_id_172]",
|
| 179 |
+
"[extra_id_173]",
|
| 180 |
+
"[extra_id_174]",
|
| 181 |
+
"[extra_id_175]",
|
| 182 |
+
"[extra_id_176]",
|
| 183 |
+
"[extra_id_177]",
|
| 184 |
+
"[extra_id_178]",
|
| 185 |
+
"[extra_id_179]",
|
| 186 |
+
"[extra_id_180]",
|
| 187 |
+
"[extra_id_181]",
|
| 188 |
+
"[extra_id_182]",
|
| 189 |
+
"[extra_id_183]",
|
| 190 |
+
"[extra_id_184]",
|
| 191 |
+
"[extra_id_185]",
|
| 192 |
+
"[extra_id_186]",
|
| 193 |
+
"[extra_id_187]",
|
| 194 |
+
"[extra_id_188]",
|
| 195 |
+
"[extra_id_189]",
|
| 196 |
+
"[extra_id_190]",
|
| 197 |
+
"[extra_id_191]",
|
| 198 |
+
"[extra_id_192]",
|
| 199 |
+
"[extra_id_193]",
|
| 200 |
+
"[extra_id_194]",
|
| 201 |
+
"[extra_id_195]",
|
| 202 |
+
"[extra_id_196]",
|
| 203 |
+
"[extra_id_197]",
|
| 204 |
+
"[extra_id_198]",
|
| 205 |
+
"[extra_id_199]",
|
| 206 |
+
"[extra_id_200]",
|
| 207 |
+
"[extra_id_201]",
|
| 208 |
+
"[extra_id_202]",
|
| 209 |
+
"[extra_id_203]",
|
| 210 |
+
"[extra_id_204]",
|
| 211 |
+
"[extra_id_205]",
|
| 212 |
+
"[extra_id_206]",
|
| 213 |
+
"[extra_id_207]",
|
| 214 |
+
"[extra_id_208]",
|
| 215 |
+
"[extra_id_209]",
|
| 216 |
+
"[extra_id_210]",
|
| 217 |
+
"[extra_id_211]",
|
| 218 |
+
"[extra_id_212]",
|
| 219 |
+
"[extra_id_213]",
|
| 220 |
+
"[extra_id_214]",
|
| 221 |
+
"[extra_id_215]",
|
| 222 |
+
"[extra_id_216]",
|
| 223 |
+
"[extra_id_217]",
|
| 224 |
+
"[extra_id_218]",
|
| 225 |
+
"[extra_id_219]",
|
| 226 |
+
"[extra_id_220]",
|
| 227 |
+
"[extra_id_221]",
|
| 228 |
+
"[extra_id_222]",
|
| 229 |
+
"[extra_id_223]",
|
| 230 |
+
"[extra_id_224]",
|
| 231 |
+
"[extra_id_225]",
|
| 232 |
+
"[extra_id_226]",
|
| 233 |
+
"[extra_id_227]",
|
| 234 |
+
"[extra_id_228]",
|
| 235 |
+
"[extra_id_229]",
|
| 236 |
+
"[extra_id_230]",
|
| 237 |
+
"[extra_id_231]",
|
| 238 |
+
"[extra_id_232]",
|
| 239 |
+
"[extra_id_233]",
|
| 240 |
+
"[extra_id_234]",
|
| 241 |
+
"[extra_id_235]",
|
| 242 |
+
"[extra_id_236]",
|
| 243 |
+
"[extra_id_237]",
|
| 244 |
+
"[extra_id_238]",
|
| 245 |
+
"[extra_id_239]",
|
| 246 |
+
"[extra_id_240]",
|
| 247 |
+
"[extra_id_241]",
|
| 248 |
+
"[extra_id_242]",
|
| 249 |
+
"[extra_id_243]",
|
| 250 |
+
"[extra_id_244]",
|
| 251 |
+
"[extra_id_245]",
|
| 252 |
+
"[extra_id_246]",
|
| 253 |
+
"[extra_id_247]",
|
| 254 |
+
"[extra_id_248]"
|
| 255 |
+
],
|
| 256 |
+
"bos_token": "[BOS]",
|
| 257 |
+
"eos_token": "[EOS]",
|
| 258 |
+
"pad_token": "[extra_id_250]",
|
| 259 |
+
"unk_token": "[extra_id_249]"
|
| 260 |
+
}
|
tiktoken.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6c497a7469b33ced9c38afb1ad6e47f03f5e5dc05f15930799210ec050c5103
|
| 3 |
+
size 2795286
|
tokenization_kimi.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tiktoken
|
| 3 |
+
|
| 4 |
+
from logging import getLogger
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import (
|
| 7 |
+
cast,
|
| 8 |
+
Tuple,
|
| 9 |
+
Dict,
|
| 10 |
+
Iterator,
|
| 11 |
+
List,
|
| 12 |
+
Union,
|
| 13 |
+
Optional,
|
| 14 |
+
)
|
| 15 |
+
from shutil import copyfile
|
| 16 |
+
from tiktoken.load import load_tiktoken_bpe
|
| 17 |
+
from tokenizers import AddedToken, pre_tokenizers, Regex
|
| 18 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 19 |
+
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
| 20 |
+
from typing import Any
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = getLogger(__name__)
|
| 24 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class TikTokenTokenizer(PreTrainedTokenizer):
|
| 28 |
+
"""
|
| 29 |
+
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
|
| 30 |
+
|
| 31 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 32 |
+
this superclass for more information regarding those methods.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_file (`str`):
|
| 36 |
+
The path to the Tiktoken model file.
|
| 37 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
|
| 38 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
| 39 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
|
| 40 |
+
The end of sequence token.
|
| 41 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
|
| 42 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 43 |
+
token instead. The second to last item in special_tokens.
|
| 44 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
|
| 45 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 46 |
+
additional_special_tokens (list of `str`, *optional*):
|
| 47 |
+
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
|
| 48 |
+
skipped when decoding if `skip_special_tokens` is set to `True`.
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 52 |
+
|
| 53 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 54 |
+
|
| 55 |
+
special_tokens: Dict[str, int]
|
| 56 |
+
|
| 57 |
+
num_reserved_special_tokens = 256
|
| 58 |
+
|
| 59 |
+
pat_str = "|".join(
|
| 60 |
+
[
|
| 61 |
+
r"""[\p{Han}]+""",
|
| 62 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 63 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 64 |
+
r"""\p{N}{1,3}""",
|
| 65 |
+
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
|
| 66 |
+
r"""\s*[\r\n]+""",
|
| 67 |
+
r"""\s+(?!\S)""",
|
| 68 |
+
r"""\s+""",
|
| 69 |
+
]
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
vocab_file,
|
| 75 |
+
bos_token: Union[str, AddedToken]="[BOS]",
|
| 76 |
+
eos_token: Union[str, AddedToken]="[EOS]",
|
| 77 |
+
unk_token: Union[str, AddedToken, None]=None,
|
| 78 |
+
pad_token: Union[str, AddedToken, None]=None,
|
| 79 |
+
additional_special_tokens: List[str]=None,
|
| 80 |
+
added_tokens_decoder: Optional[dict] = None,
|
| 81 |
+
**kwargs,
|
| 82 |
+
):
|
| 83 |
+
assert os.path.isfile(vocab_file), vocab_file
|
| 84 |
+
|
| 85 |
+
if additional_special_tokens is None:
|
| 86 |
+
additional_special_tokens = [
|
| 87 |
+
"<|im_end|>",
|
| 88 |
+
"<|im_user|>",
|
| 89 |
+
"<|im_assistant|>",
|
| 90 |
+
"<|start_header_id|>",
|
| 91 |
+
"<|end_header_id|>",
|
| 92 |
+
"[EOT]",
|
| 93 |
+
"<|im_system|>",
|
| 94 |
+
"<|im_middle|>",
|
| 95 |
+
]
|
| 96 |
+
|
| 97 |
+
special_tokens_mapping = {
|
| 98 |
+
i: added_tokens_decoder[i].content for i in added_tokens_decoder
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
self.vocab_file = vocab_file
|
| 102 |
+
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
| 103 |
+
num_base_tokens = len(mergeable_ranks)
|
| 104 |
+
self.special_tokens = {
|
| 105 |
+
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i
|
| 106 |
+
for i in range(
|
| 107 |
+
num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2
|
| 108 |
+
)
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
self.model = tiktoken.Encoding(
|
| 114 |
+
name=Path(vocab_file).name,
|
| 115 |
+
pat_str=self.pat_str,
|
| 116 |
+
mergeable_ranks=mergeable_ranks,
|
| 117 |
+
special_tokens=self.special_tokens,
|
| 118 |
+
)
|
| 119 |
+
logger.info(f"Reloaded tiktoken model from {vocab_file}")
|
| 120 |
+
|
| 121 |
+
self.n_words: int = self.model.n_vocab
|
| 122 |
+
# BOS / EOS token IDs
|
| 123 |
+
self.bos_id: int = self.special_tokens[str(bos_token)]
|
| 124 |
+
self.eos_id: int = self.special_tokens[str(eos_token)]
|
| 125 |
+
logger.info(
|
| 126 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
self.pad_id: int = self.special_tokens[str(pad_token)]
|
| 130 |
+
self.unk_id: int = self.special_tokens[str(unk_token)]
|
| 131 |
+
|
| 132 |
+
self.byte_encoder = bytes_to_unicode()
|
| 133 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 134 |
+
|
| 135 |
+
self.decoder = {}
|
| 136 |
+
for i in range(self.n_words):
|
| 137 |
+
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
| 138 |
+
decoding = ''.join([
|
| 139 |
+
self.byte_encoder[ord(char)] for char in
|
| 140 |
+
self.model.decode_single_token_bytes(i).decode('latin-1')
|
| 141 |
+
])
|
| 142 |
+
self.decoder[i] = decoding
|
| 143 |
+
|
| 144 |
+
self.encoder = {}
|
| 145 |
+
for i in range(self.n_words):
|
| 146 |
+
if i in self.decoder:
|
| 147 |
+
self.encoder[self.decoder[i]] = i
|
| 148 |
+
|
| 149 |
+
super().__init__(
|
| 150 |
+
bos_token=bos_token,
|
| 151 |
+
eos_token=eos_token,
|
| 152 |
+
unk_token=unk_token,
|
| 153 |
+
pad_token=pad_token,
|
| 154 |
+
additional_special_tokens=additional_special_tokens,
|
| 155 |
+
**kwargs,
|
| 156 |
+
)
|
| 157 |
+
self.all_special_ids_set = set(self.all_special_ids)
|
| 158 |
+
|
| 159 |
+
def encode(
|
| 160 |
+
self,
|
| 161 |
+
text: str,
|
| 162 |
+
allow_special_tokens: bool = True,
|
| 163 |
+
**kwargs
|
| 164 |
+
) -> List[int]:
|
| 165 |
+
"""
|
| 166 |
+
Encodes a string into a list of token IDs.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
text (str): The input string to be encoded.
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
list[int]: A list of token IDs.
|
| 173 |
+
"""
|
| 174 |
+
# If there are other args, we should call super().encode because there are a lot of code
|
| 175 |
+
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
|
| 176 |
+
# NOTE: our encode method is not compatible with the super().encode method,
|
| 177 |
+
# e.g. split_special_tokens' default is True in our encode method.
|
| 178 |
+
if len(kwargs) > 0:
|
| 179 |
+
logger.warning( f"Calling super().encode with {kwargs}" )
|
| 180 |
+
return super().encode(text, **kwargs)
|
| 181 |
+
|
| 182 |
+
assert type(text) is str
|
| 183 |
+
|
| 184 |
+
# The tiktoken tokenizer can handle <=400k chars without
|
| 185 |
+
# pyo3_runtime.PanicException.
|
| 186 |
+
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
|
| 187 |
+
|
| 188 |
+
# https://github.com/openai/tiktoken/issues/195
|
| 189 |
+
# Here we iterate over subsequences and split if we exceed the limit
|
| 190 |
+
# of max consecutive non-whitespace or whitespace characters.
|
| 191 |
+
MAX_NO_WHITESPACES_CHARS = 25_000
|
| 192 |
+
|
| 193 |
+
texts = self.pre_tokenizer_process(text)
|
| 194 |
+
|
| 195 |
+
all_substrs = []
|
| 196 |
+
for text in texts:
|
| 197 |
+
substrs = (
|
| 198 |
+
substr
|
| 199 |
+
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
|
| 200 |
+
for substr in self._split_whitespaces_or_nonwhitespaces(
|
| 201 |
+
text[i: i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
|
| 202 |
+
)
|
| 203 |
+
)
|
| 204 |
+
all_substrs.extend(substrs)
|
| 205 |
+
|
| 206 |
+
t: List[int] = []
|
| 207 |
+
for substr in all_substrs:
|
| 208 |
+
if allow_special_tokens:
|
| 209 |
+
t.extend(
|
| 210 |
+
# we should consider special token as a common token
|
| 211 |
+
self.model.encode(
|
| 212 |
+
substr,
|
| 213 |
+
allowed_special="all",
|
| 214 |
+
)
|
| 215 |
+
)
|
| 216 |
+
else:
|
| 217 |
+
t.extend(
|
| 218 |
+
# we should consider special token as a common token
|
| 219 |
+
self.model.encode(
|
| 220 |
+
substr,
|
| 221 |
+
disallowed_special=(),
|
| 222 |
+
)
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
return t
|
| 226 |
+
|
| 227 |
+
def decode(
|
| 228 |
+
self,
|
| 229 |
+
token_ids: Union[int, List[int]],
|
| 230 |
+
**kwargs
|
| 231 |
+
) -> str:
|
| 232 |
+
"""
|
| 233 |
+
Decodes a list of token IDs into a string.
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
token_ids (List[int]): The list of token IDs to be decoded.
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
str: The decoded string.
|
| 240 |
+
"""
|
| 241 |
+
# If there are other args, we should call super().decode because there are a lot of code
|
| 242 |
+
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
|
| 243 |
+
if len(kwargs) > 0:
|
| 244 |
+
return super().decode(token_ids, **kwargs)
|
| 245 |
+
|
| 246 |
+
if type(token_ids) is int:
|
| 247 |
+
token_ids = [token_ids]
|
| 248 |
+
|
| 249 |
+
return self.model.decode(cast(List[int], token_ids))
|
| 250 |
+
|
| 251 |
+
@staticmethod
|
| 252 |
+
def _split_whitespaces_or_nonwhitespaces(
|
| 253 |
+
s: str, max_consecutive_slice_len: int
|
| 254 |
+
) -> Iterator[str]:
|
| 255 |
+
"""
|
| 256 |
+
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
|
| 257 |
+
consecutive whitespaces or consecutive non-whitespaces.
|
| 258 |
+
"""
|
| 259 |
+
current_slice_len = 0
|
| 260 |
+
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
|
| 261 |
+
slice_start = 0
|
| 262 |
+
|
| 263 |
+
for i in range(len(s)):
|
| 264 |
+
is_now_space = s[i].isspace()
|
| 265 |
+
|
| 266 |
+
if current_slice_is_space ^ is_now_space:
|
| 267 |
+
current_slice_len = 1
|
| 268 |
+
current_slice_is_space = is_now_space
|
| 269 |
+
else:
|
| 270 |
+
current_slice_len += 1
|
| 271 |
+
if current_slice_len > max_consecutive_slice_len:
|
| 272 |
+
yield s[slice_start:i]
|
| 273 |
+
slice_start = i
|
| 274 |
+
current_slice_len = 1
|
| 275 |
+
yield s[slice_start:]
|
| 276 |
+
|
| 277 |
+
def pre_tokenizer_process(self, text: str) -> List[str]:
|
| 278 |
+
"""
|
| 279 |
+
pre-tokenizes the input text into a list of tokens.
|
| 280 |
+
This method is used to split the input text into smaller chunks for internal processing.
|
| 281 |
+
"""
|
| 282 |
+
return [text]
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
|
| 286 |
+
@property
|
| 287 |
+
def vocab_size(self) -> int:
|
| 288 |
+
return self.n_words
|
| 289 |
+
|
| 290 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 291 |
+
return self.encoder
|
| 292 |
+
|
| 293 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
| 294 |
+
return [
|
| 295 |
+
self.decoder[t]
|
| 296 |
+
for t in self.encode(text)
|
| 297 |
+
]
|
| 298 |
+
|
| 299 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 300 |
+
return self.encoder.get(token, self.unk_id)
|
| 301 |
+
|
| 302 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 303 |
+
return self.decoder.get(index)
|
| 304 |
+
|
| 305 |
+
@staticmethod
|
| 306 |
+
def clean_up_tokenization(out_string: str) -> str:
|
| 307 |
+
return out_string
|
| 308 |
+
|
| 309 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 310 |
+
text = ''.join(tokens)
|
| 311 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
|
| 312 |
+
return text
|
| 313 |
+
|
| 314 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 315 |
+
if not os.path.isdir(save_directory):
|
| 316 |
+
raise ValueError(f"vocabulary path ({save_directory}) should be a directory")
|
| 317 |
+
out_vocab_file = os.path.join(
|
| 318 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 322 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 323 |
+
|
| 324 |
+
return (out_vocab_file,)
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
def apply_chat_template(
|
| 329 |
+
self, conversation, tools: Optional[list[dict]] = None,
|
| 330 |
+
tokenize: bool = False,
|
| 331 |
+
add_generation_prompt: bool = True,
|
| 332 |
+
**kwargs
|
| 333 |
+
):
|
| 334 |
+
tools = deep_sort_dict(tools)
|
| 335 |
+
return super().apply_chat_template(conversation,
|
| 336 |
+
tools=tools,
|
| 337 |
+
tokenize=tokenize,
|
| 338 |
+
add_generation_prompt=add_generation_prompt,
|
| 339 |
+
**kwargs)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def deep_sort_dict(obj: Any) -> Any:
|
| 343 |
+
if isinstance(obj, dict):
|
| 344 |
+
return {k: deep_sort_dict(v) for k, v in sorted(obj.items())}
|
| 345 |
+
if isinstance(obj, list):
|
| 346 |
+
return [deep_sort_dict(item) for item in obj]
|
| 347 |
+
return obj
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"163584": {
|
| 4 |
+
"content": "[BOS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"163585": {
|
| 12 |
+
"content": "[EOS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"163586": {
|
| 20 |
+
"content": "<|im_end|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"163587": {
|
| 28 |
+
"content": "<|im_user|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"163588": {
|
| 36 |
+
"content": "<|im_assistant|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"163590": {
|
| 44 |
+
"content": "<|start_header_id|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"163591": {
|
| 52 |
+
"content": "<|end_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"163593": {
|
| 60 |
+
"content": "[EOT]",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"163594": {
|
| 68 |
+
"content": "<|im_system|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"163595": {
|
| 76 |
+
"content": "<|tool_calls_section_begin|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": false
|
| 82 |
+
},
|
| 83 |
+
"163596": {
|
| 84 |
+
"content": "<|tool_calls_section_end|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": false
|
| 90 |
+
},
|
| 91 |
+
"163597": {
|
| 92 |
+
"content": "<|tool_call_begin|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": false
|
| 98 |
+
},
|
| 99 |
+
"163598": {
|
| 100 |
+
"content": "<|tool_call_argument_begin|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": false
|
| 106 |
+
},
|
| 107 |
+
"163599": {
|
| 108 |
+
"content": "<|tool_call_end|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": false
|
| 114 |
+
},
|
| 115 |
+
"163601": {
|
| 116 |
+
"content": "<|im_middle|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"163838": {
|
| 124 |
+
"content": "[UNK]",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"163839": {
|
| 132 |
+
"content": "[PAD]",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
}
|
| 139 |
+
},
|
| 140 |
+
"additional_special_tokens": [
|
| 141 |
+
"<|im_end|>",
|
| 142 |
+
"<|im_user|>",
|
| 143 |
+
"<|im_assistant|>",
|
| 144 |
+
"<|start_header_id|>",
|
| 145 |
+
"<|end_header_id|>",
|
| 146 |
+
"[EOT]",
|
| 147 |
+
"<|im_system|>",
|
| 148 |
+
"<|im_middle|>"
|
| 149 |
+
],
|
| 150 |
+
"bos_token": "[BOS]",
|
| 151 |
+
"clean_up_tokenization_spaces": false,
|
| 152 |
+
"eos_token": "[EOS]",
|
| 153 |
+
"extra_special_tokens": {},
|
| 154 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 155 |
+
"pad_token": "[PAD]",
|
| 156 |
+
"tokenizer_class": "TikTokenTokenizer",
|
| 157 |
+
"unk_token": "[UNK]",
|
| 158 |
+
"auto_map": {
|
| 159 |
+
"AutoTokenizer": [
|
| 160 |
+
"tokenization_kimi.TikTokenTokenizer",
|
| 161 |
+
null
|
| 162 |
+
]
|
| 163 |
+
}
|
| 164 |
+
}
|