Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- moe
|
| 5 |
+
train: false
|
| 6 |
+
inference: false
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
---
|
| 9 |
+
## Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bitgs8-metaoffload-HQQ
|
| 10 |
+
This is a version of the
|
| 11 |
+
<a href="https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1"> Mixtral-8x7B-Instruct-v0.1 model</a> quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ).
|
| 12 |
+
|
| 13 |
+
More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit.
|
| 14 |
+
|
| 15 |
+
The difference between this model and <a href="https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-HQQ"> this </a> is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB!
|
| 16 |
+
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
----------------------------------------------------------------------------------------------------------------------------------
|
| 20 |
+
</p>
|
| 21 |
+
|
| 22 |
+
## Performance
|
| 23 |
+
| Models | Mixtral Original | HQQ quantized |
|
| 24 |
+
|-------------------|------------------|------------------|
|
| 25 |
+
| Runtime VRAM | 94 GB | <b>13.6 GB</b> |
|
| 26 |
+
| ARC (25-shot) | 70.22 | 68.26 |
|
| 27 |
+
| Hellaswag (10-shot)| 87.63 | 85.73 |
|
| 28 |
+
| MMLU (5-shot) | 71.16 | 68.69 |
|
| 29 |
+
| TruthfulQA-MC2 | 64.58 | 64.52 |
|
| 30 |
+
| Winogrande (5-shot)| 81.37 | 80.19 |
|
| 31 |
+
| GSM8K (5-shot)| 60.73 | 52.69 |
|
| 32 |
+
| Average| 72.62 | 70.01 |
|
| 33 |
+
|
| 34 |
+
### Basic Usage
|
| 35 |
+
To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:
|
| 36 |
+
``` Python
|
| 37 |
+
import transformers
|
| 38 |
+
from threading import Thread
|
| 39 |
+
|
| 40 |
+
model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bitgs8-metaoffload-HQQ'
|
| 41 |
+
#Load the model
|
| 42 |
+
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 44 |
+
model = HQQModelForCausalLM.from_quantized(model_id)
|
| 45 |
+
|
| 46 |
+
#Optional: set backend/compile
|
| 47 |
+
#You will need to install CUDA kernels apriori
|
| 48 |
+
# git clone https://github.com/mobiusml/hqq/
|
| 49 |
+
# cd hqq/kernels && python setup_cuda.py install
|
| 50 |
+
from hqq.core.quantize import *
|
| 51 |
+
HQQLinear.set_backend(HQQBackend.ATEN_BACKPROP)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def chat_processor(chat, max_new_tokens=100, do_sample=True):
|
| 55 |
+
tokenizer.use_default_system_prompt = False
|
| 56 |
+
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
generate_params = dict(
|
| 59 |
+
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to('cuda'),
|
| 60 |
+
streamer=streamer,
|
| 61 |
+
max_new_tokens=max_new_tokens,
|
| 62 |
+
do_sample=do_sample,
|
| 63 |
+
top_p=0.90,
|
| 64 |
+
top_k=50,
|
| 65 |
+
temperature= 0.6,
|
| 66 |
+
num_beams=1,
|
| 67 |
+
repetition_penalty=1.2,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
t = Thread(target=model.generate, kwargs=generate_params)
|
| 71 |
+
t.start()
|
| 72 |
+
outputs = []
|
| 73 |
+
for text in streamer:
|
| 74 |
+
outputs.append(text)
|
| 75 |
+
print(text, end="", flush=True)
|
| 76 |
+
|
| 77 |
+
return outputs
|
| 78 |
+
|
| 79 |
+
################################################################################################
|
| 80 |
+
#Generation
|
| 81 |
+
outputs = chat_processor("How do I build a car?", max_new_tokens=1000, do_sample=False)
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
### Quantization
|
| 86 |
+
|
| 87 |
+
You can reproduce the model using the following quant configs:
|
| 88 |
+
|
| 89 |
+
``` Python
|
| 90 |
+
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
|
| 91 |
+
|
| 92 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 93 |
+
model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path)
|
| 94 |
+
|
| 95 |
+
#Quantize params
|
| 96 |
+
from hqq.core.quantize import *
|
| 97 |
+
attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True)
|
| 98 |
+
experts_params = BaseQuantizeConfig(nbits=2, group_size=8, offload_meta=True)
|
| 99 |
+
|
| 100 |
+
zero_scale_group_size = 128
|
| 101 |
+
attn_prams['scale_quant_params']['group_size'] = zero_scale_group_size
|
| 102 |
+
attn_prams['zero_quant_params']['group_size'] = zero_scale_group_size
|
| 103 |
+
experts_params['scale_quant_params']['group_size'] = zero_scale_group_size
|
| 104 |
+
experts_params['zero_quant_params']['group_size'] = zero_scale_group_size
|
| 105 |
+
|
| 106 |
+
quant_config = {}
|
| 107 |
+
#Attention
|
| 108 |
+
quant_config['self_attn.q_proj'] = attn_prams
|
| 109 |
+
quant_config['self_attn.k_proj'] = attn_prams
|
| 110 |
+
quant_config['self_attn.v_proj'] = attn_prams
|
| 111 |
+
quant_config['self_attn.o_proj'] = attn_prams
|
| 112 |
+
#Experts
|
| 113 |
+
quant_config['block_sparse_moe.experts.w1'] = experts_params
|
| 114 |
+
quant_config['block_sparse_moe.experts.w2'] = experts_params
|
| 115 |
+
quant_config['block_sparse_moe.experts.w3'] = experts_params
|
| 116 |
+
|
| 117 |
+
#Quantize
|
| 118 |
+
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16);
|
| 119 |
+
model.eval();
|
| 120 |
+
```
|