zhoukz commited on
Commit
25b909d
·
verified ·
1 Parent(s): 43a1d30

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|AUDIO|>": 151646,
5
+ "<|IMAGE|>": 151655,
6
+ "<|VIDEO|>": 151656,
7
+ "<|ar|>": 151679,
8
+ "<|audio_bos|>": 151647,
9
+ "<|audio_eos|>": 151648,
10
+ "<|box_end|>": 151649,
11
+ "<|de|>": 151667,
12
+ "<|endoftext|>": 151643,
13
+ "<|en|>": 151665,
14
+ "<|es|>": 151668,
15
+ "<|file_sep|>": 151664,
16
+ "<|fim_middle|>": 151660,
17
+ "<|fim_pad|>": 151662,
18
+ "<|fim_prefix|>": 151659,
19
+ "<|fim_suffix|>": 151661,
20
+ "<|fr|>": 151669,
21
+ "<|hi|>": 151670,
22
+ "<|id|>": 151676,
23
+ "<|im_end|>": 151645,
24
+ "<|im_start|>": 151644,
25
+ "<|it|>": 151678,
26
+ "<|jp|>": 151680,
27
+ "<|kr|>": 151666,
28
+ "<|nl|>": 151674,
29
+ "<|pt|>": 151675,
30
+ "<|quad_end|>": 151651,
31
+ "<|quad_start|>": 151650,
32
+ "<|repo_name|>": 151663,
33
+ "<|ru|>": 151677,
34
+ "<|th|>": 151672,
35
+ "<|uk|>": 151671,
36
+ "<|unknown|>": 151681,
37
+ "<|vision_bos|>": 151652,
38
+ "<|vision_eos|>": 151653,
39
+ "<|vision_pad|>": 151654,
40
+ "<|vi|>": 151673
41
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiDashengLMModel"
4
+ ],
5
+ "audio_encoder_config": {
6
+ "attn_drop_rate": 0.0,
7
+ "center": true,
8
+ "depth": 32,
9
+ "drop_rate": 0.0,
10
+ "embed_dim": 1280,
11
+ "f_max": 8000.0,
12
+ "f_min": 0.0,
13
+ "hop_length": 160,
14
+ "init_values": null,
15
+ "input_channels": 1,
16
+ "mlp_ratio": 4.0,
17
+ "model_type": "midashenglm_dasheng_encoder",
18
+ "n_fft": 512,
19
+ "n_mels": 64,
20
+ "num_heads": 16,
21
+ "outputdim": 527,
22
+ "patch_size": [
23
+ 64,
24
+ 4
25
+ ],
26
+ "patch_stride": [
27
+ 64,
28
+ 4
29
+ ],
30
+ "qkv_bias": true,
31
+ "sample_rate": 16000,
32
+ "target_length": 1008,
33
+ "win_length": 512
34
+ },
35
+ "audio_token_id": 151646,
36
+ "auto_map": {
37
+ "AutoConfig": "configuration_midashenglm.MiDashengLMConfig",
38
+ "AutoModelForCausalLM": "modeling_midashenglm.MiDashengLMModel"
39
+ },
40
+ "model_type": "midashenglm",
41
+ "subsample_factor": 5,
42
+ "text_config": {
43
+ "attention_dropout": 0.0,
44
+ "hidden_act": "silu",
45
+ "hidden_size": 3584,
46
+ "init_std": 0.02,
47
+ "initializer_range": 0.02,
48
+ "intermediate_size": 18944,
49
+ "max_position_embeddings": 32768,
50
+ "max_window_layers": 28,
51
+ "model_type": "qwen2_5_omni_text",
52
+ "num_attention_heads": 28,
53
+ "num_hidden_layers": 28,
54
+ "num_key_value_heads": 4,
55
+ "rms_norm_eps": 1e-06,
56
+ "rope_scaling": {
57
+ "mrope_section": [
58
+ 16,
59
+ 24,
60
+ 24
61
+ ],
62
+ "rope_type": "default",
63
+ "type": "default"
64
+ },
65
+ "rope_theta": 1000000.0,
66
+ "sliding_window": 32768,
67
+ "use_cache": true,
68
+ "use_sliding_window": false,
69
+ "vocab_size": 152064
70
+ },
71
+ "torch_dtype": "float32",
72
+ "transformers_version": "4.52.4"
73
+ }
configuration_midashenglm.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Optional, Tuple, Union
2
+
3
+ from transformers import PretrainedConfig
4
+ from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
5
+ Qwen2_5OmniTextConfig,
6
+ )
7
+
8
+
9
+ class DashengConfig(PretrainedConfig):
10
+ model_type = "midashenglm_dasheng_encoder"
11
+
12
+ def __init__(
13
+ self,
14
+ embed_dim: int = 768,
15
+ outputdim: int = 527,
16
+ patch_size: Union[int, Tuple[int, int]] = 16,
17
+ patch_stride: Union[int, Tuple[int, int]] = 16,
18
+ input_channels: int = 1,
19
+ target_length: int = 1012,
20
+ depth: int = 12,
21
+ num_heads: int = 12,
22
+ mlp_ratio: float = 4.0,
23
+ qkv_bias: bool = True,
24
+ init_values: Optional[float] = None,
25
+ drop_rate: float = 0.0,
26
+ attn_drop_rate: float = 0.0,
27
+ f_min: float = 0.0,
28
+ f_max: float = 8000.0,
29
+ center: bool = True,
30
+ win_length: int = 512,
31
+ hop_length: int = 160,
32
+ sample_rate: int = 16000,
33
+ n_fft: int = 512,
34
+ n_mels: int = 64,
35
+ **kwargs,
36
+ ):
37
+ self.embed_dim = embed_dim
38
+ self.outputdim = outputdim
39
+ self.patch_size = patch_size
40
+ self.patch_stride = patch_stride
41
+ self.input_channels = input_channels
42
+ self.target_length = target_length
43
+ self.depth = depth
44
+ self.num_heads = num_heads
45
+ self.mlp_ratio = mlp_ratio
46
+ self.qkv_bias = qkv_bias
47
+ self.init_values = init_values
48
+ self.drop_rate = drop_rate
49
+ self.attn_drop_rate = attn_drop_rate
50
+ self.f_min = f_min
51
+ self.f_max = f_max
52
+ self.center = center
53
+ self.win_length = win_length
54
+ self.hop_length = hop_length
55
+ self.sample_rate = sample_rate
56
+ self.n_fft = n_fft
57
+ self.n_mels = n_mels
58
+ super().__init__(**kwargs)
59
+
60
+
61
+ class MiDashengLMConfig(PretrainedConfig):
62
+ model_type = "midashenglm"
63
+
64
+ def __init__(
65
+ self,
66
+ audio_encoder_config: Dict = {},
67
+ subsample_factor: int = 5,
68
+ text_config: Dict = {},
69
+ audio_token_id: Optional[int] = None,
70
+ **kwargs,
71
+ ):
72
+ self.audio_encoder_config = DashengConfig(**audio_encoder_config)
73
+ self.subsample_factor = subsample_factor
74
+ self.text_config = (
75
+ Qwen2_5OmniTextConfig(**text_config)
76
+ if text_config
77
+ else Qwen2_5OmniTextConfig()
78
+ )
79
+ self.audio_token_id = audio_token_id
80
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151643,
4
+ 151645
5
+ ],
6
+ "max_length": 32768,
7
+ "pad_token_id": 151643,
8
+ "transformers_version": "4.52.4"
9
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:311cd41867cd5db1cc101428e1b53cd483afe30ad69a6bbec5bd0668990e9b26
3
+ size 4961987424
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b2c52f3b7959448572a59e4fafdf16bc1c7de466a0e0a84890daf0a7b27c72b
3
+ size 4932744424
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88be6288965c59e15346294839b83b331d34e8c269697b9fe0e2a88561cb0ff5
3
+ size 4932744424
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:235e84a11a65c6232e53f99dbd357fa16840cfb9d0140f7f7d59d9cf21bff90b
3
+ size 4998852848
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ef7df2637fb95431d8ff71941d383d2c9d68353bebe9f6d07b69c1cc227b18d
3
+ size 4984124832
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:628a7b5342510640afbbd78492d1dd60c405fb561a504b47924cd2348a46f8cf
3
+ size 4932744480
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d42c1493ff42ff19913c5793c66c5ae9818e85ae3841f3e0ef5e1d0fe89c57d
3
+ size 3383846936
model.safetensors.index.json ADDED
@@ -0,0 +1,745 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 33126960136
4
+ },
5
+ "weight_map": {
6
+ "audio_encoder.blocks.0.attn.proj.bias": "model-00001-of-00007.safetensors",
7
+ "audio_encoder.blocks.0.attn.proj.weight": "model-00001-of-00007.safetensors",
8
+ "audio_encoder.blocks.0.attn.qkv.bias": "model-00001-of-00007.safetensors",
9
+ "audio_encoder.blocks.0.attn.qkv.weight": "model-00001-of-00007.safetensors",
10
+ "audio_encoder.blocks.0.mlp.fc1.bias": "model-00001-of-00007.safetensors",
11
+ "audio_encoder.blocks.0.mlp.fc1.weight": "model-00001-of-00007.safetensors",
12
+ "audio_encoder.blocks.0.mlp.fc2.bias": "model-00001-of-00007.safetensors",
13
+ "audio_encoder.blocks.0.mlp.fc2.weight": "model-00001-of-00007.safetensors",
14
+ "audio_encoder.blocks.0.norm1.bias": "model-00001-of-00007.safetensors",
15
+ "audio_encoder.blocks.0.norm1.weight": "model-00001-of-00007.safetensors",
16
+ "audio_encoder.blocks.0.norm2.bias": "model-00001-of-00007.safetensors",
17
+ "audio_encoder.blocks.0.norm2.weight": "model-00001-of-00007.safetensors",
18
+ "audio_encoder.blocks.1.attn.proj.bias": "model-00001-of-00007.safetensors",
19
+ "audio_encoder.blocks.1.attn.proj.weight": "model-00001-of-00007.safetensors",
20
+ "audio_encoder.blocks.1.attn.qkv.bias": "model-00001-of-00007.safetensors",
21
+ "audio_encoder.blocks.1.attn.qkv.weight": "model-00001-of-00007.safetensors",
22
+ "audio_encoder.blocks.1.mlp.fc1.bias": "model-00001-of-00007.safetensors",
23
+ "audio_encoder.blocks.1.mlp.fc1.weight": "model-00001-of-00007.safetensors",
24
+ "audio_encoder.blocks.1.mlp.fc2.bias": "model-00001-of-00007.safetensors",
25
+ "audio_encoder.blocks.1.mlp.fc2.weight": "model-00001-of-00007.safetensors",
26
+ "audio_encoder.blocks.1.norm1.bias": "model-00001-of-00007.safetensors",
27
+ "audio_encoder.blocks.1.norm1.weight": "model-00001-of-00007.safetensors",
28
+ "audio_encoder.blocks.1.norm2.bias": "model-00001-of-00007.safetensors",
29
+ "audio_encoder.blocks.1.norm2.weight": "model-00001-of-00007.safetensors",
30
+ "audio_encoder.blocks.10.attn.proj.bias": "model-00001-of-00007.safetensors",
31
+ "audio_encoder.blocks.10.attn.proj.weight": "model-00001-of-00007.safetensors",
32
+ "audio_encoder.blocks.10.attn.qkv.bias": "model-00001-of-00007.safetensors",
33
+ "audio_encoder.blocks.10.attn.qkv.weight": "model-00001-of-00007.safetensors",
34
+ "audio_encoder.blocks.10.mlp.fc1.bias": "model-00001-of-00007.safetensors",
35
+ "audio_encoder.blocks.10.mlp.fc1.weight": "model-00001-of-00007.safetensors",
36
+ "audio_encoder.blocks.10.mlp.fc2.bias": "model-00001-of-00007.safetensors",
37
+ "audio_encoder.blocks.10.mlp.fc2.weight": "model-00001-of-00007.safetensors",
38
+ "audio_encoder.blocks.10.norm1.bias": "model-00001-of-00007.safetensors",
39
+ "audio_encoder.blocks.10.norm1.weight": "model-00001-of-00007.safetensors",
40
+ "audio_encoder.blocks.10.norm2.bias": "model-00001-of-00007.safetensors",
41
+ "audio_encoder.blocks.10.norm2.weight": "model-00001-of-00007.safetensors",
42
+ "audio_encoder.blocks.11.attn.proj.bias": "model-00001-of-00007.safetensors",
43
+ "audio_encoder.blocks.11.attn.proj.weight": "model-00001-of-00007.safetensors",
44
+ "audio_encoder.blocks.11.attn.qkv.bias": "model-00001-of-00007.safetensors",
45
+ "audio_encoder.blocks.11.attn.qkv.weight": "model-00001-of-00007.safetensors",
46
+ "audio_encoder.blocks.11.mlp.fc1.bias": "model-00001-of-00007.safetensors",
47
+ "audio_encoder.blocks.11.mlp.fc1.weight": "model-00001-of-00007.safetensors",
48
+ "audio_encoder.blocks.11.mlp.fc2.bias": "model-00001-of-00007.safetensors",
49
+ "audio_encoder.blocks.11.mlp.fc2.weight": "model-00001-of-00007.safetensors",
50
+ "audio_encoder.blocks.11.norm1.bias": "model-00001-of-00007.safetensors",
51
+ "audio_encoder.blocks.11.norm1.weight": "model-00001-of-00007.safetensors",
52
+ "audio_encoder.blocks.11.norm2.bias": "model-00001-of-00007.safetensors",
53
+ "audio_encoder.blocks.11.norm2.weight": "model-00001-of-00007.safetensors",
54
+ "audio_encoder.blocks.12.attn.proj.bias": "model-00001-of-00007.safetensors",
55
+ "audio_encoder.blocks.12.attn.proj.weight": "model-00001-of-00007.safetensors",
56
+ "audio_encoder.blocks.12.attn.qkv.bias": "model-00001-of-00007.safetensors",
57
+ "audio_encoder.blocks.12.attn.qkv.weight": "model-00001-of-00007.safetensors",
58
+ "audio_encoder.blocks.12.mlp.fc1.bias": "model-00001-of-00007.safetensors",
59
+ "audio_encoder.blocks.12.mlp.fc1.weight": "model-00001-of-00007.safetensors",
60
+ "audio_encoder.blocks.12.mlp.fc2.bias": "model-00001-of-00007.safetensors",
61
+ "audio_encoder.blocks.12.mlp.fc2.weight": "model-00001-of-00007.safetensors",
62
+ "audio_encoder.blocks.12.norm1.bias": "model-00001-of-00007.safetensors",
63
+ "audio_encoder.blocks.12.norm1.weight": "model-00001-of-00007.safetensors",
64
+ "audio_encoder.blocks.12.norm2.bias": "model-00001-of-00007.safetensors",
65
+ "audio_encoder.blocks.12.norm2.weight": "model-00001-of-00007.safetensors",
66
+ "audio_encoder.blocks.13.attn.proj.bias": "model-00001-of-00007.safetensors",
67
+ "audio_encoder.blocks.13.attn.proj.weight": "model-00001-of-00007.safetensors",
68
+ "audio_encoder.blocks.13.attn.qkv.bias": "model-00001-of-00007.safetensors",
69
+ "audio_encoder.blocks.13.attn.qkv.weight": "model-00001-of-00007.safetensors",
70
+ "audio_encoder.blocks.13.mlp.fc1.bias": "model-00001-of-00007.safetensors",
71
+ "audio_encoder.blocks.13.mlp.fc1.weight": "model-00001-of-00007.safetensors",
72
+ "audio_encoder.blocks.13.mlp.fc2.bias": "model-00001-of-00007.safetensors",
73
+ "audio_encoder.blocks.13.mlp.fc2.weight": "model-00001-of-00007.safetensors",
74
+ "audio_encoder.blocks.13.norm1.bias": "model-00001-of-00007.safetensors",
75
+ "audio_encoder.blocks.13.norm1.weight": "model-00001-of-00007.safetensors",
76
+ "audio_encoder.blocks.13.norm2.bias": "model-00001-of-00007.safetensors",
77
+ "audio_encoder.blocks.13.norm2.weight": "model-00001-of-00007.safetensors",
78
+ "audio_encoder.blocks.14.attn.proj.bias": "model-00001-of-00007.safetensors",
79
+ "audio_encoder.blocks.14.attn.proj.weight": "model-00001-of-00007.safetensors",
80
+ "audio_encoder.blocks.14.attn.qkv.bias": "model-00001-of-00007.safetensors",
81
+ "audio_encoder.blocks.14.attn.qkv.weight": "model-00001-of-00007.safetensors",
82
+ "audio_encoder.blocks.14.mlp.fc1.bias": "model-00001-of-00007.safetensors",
83
+ "audio_encoder.blocks.14.mlp.fc1.weight": "model-00001-of-00007.safetensors",
84
+ "audio_encoder.blocks.14.mlp.fc2.bias": "model-00001-of-00007.safetensors",
85
+ "audio_encoder.blocks.14.mlp.fc2.weight": "model-00001-of-00007.safetensors",
86
+ "audio_encoder.blocks.14.norm1.bias": "model-00001-of-00007.safetensors",
87
+ "audio_encoder.blocks.14.norm1.weight": "model-00001-of-00007.safetensors",
88
+ "audio_encoder.blocks.14.norm2.bias": "model-00001-of-00007.safetensors",
89
+ "audio_encoder.blocks.14.norm2.weight": "model-00001-of-00007.safetensors",
90
+ "audio_encoder.blocks.15.attn.proj.bias": "model-00001-of-00007.safetensors",
91
+ "audio_encoder.blocks.15.attn.proj.weight": "model-00001-of-00007.safetensors",
92
+ "audio_encoder.blocks.15.attn.qkv.bias": "model-00001-of-00007.safetensors",
93
+ "audio_encoder.blocks.15.attn.qkv.weight": "model-00001-of-00007.safetensors",
94
+ "audio_encoder.blocks.15.mlp.fc1.bias": "model-00001-of-00007.safetensors",
95
+ "audio_encoder.blocks.15.mlp.fc1.weight": "model-00001-of-00007.safetensors",
96
+ "audio_encoder.blocks.15.mlp.fc2.bias": "model-00001-of-00007.safetensors",
97
+ "audio_encoder.blocks.15.mlp.fc2.weight": "model-00001-of-00007.safetensors",
98
+ "audio_encoder.blocks.15.norm1.bias": "model-00001-of-00007.safetensors",
99
+ "audio_encoder.blocks.15.norm1.weight": "model-00001-of-00007.safetensors",
100
+ "audio_encoder.blocks.15.norm2.bias": "model-00001-of-00007.safetensors",
101
+ "audio_encoder.blocks.15.norm2.weight": "model-00001-of-00007.safetensors",
102
+ "audio_encoder.blocks.16.attn.proj.bias": "model-00001-of-00007.safetensors",
103
+ "audio_encoder.blocks.16.attn.proj.weight": "model-00001-of-00007.safetensors",
104
+ "audio_encoder.blocks.16.attn.qkv.bias": "model-00001-of-00007.safetensors",
105
+ "audio_encoder.blocks.16.attn.qkv.weight": "model-00001-of-00007.safetensors",
106
+ "audio_encoder.blocks.16.mlp.fc1.bias": "model-00001-of-00007.safetensors",
107
+ "audio_encoder.blocks.16.mlp.fc1.weight": "model-00001-of-00007.safetensors",
108
+ "audio_encoder.blocks.16.mlp.fc2.bias": "model-00001-of-00007.safetensors",
109
+ "audio_encoder.blocks.16.mlp.fc2.weight": "model-00001-of-00007.safetensors",
110
+ "audio_encoder.blocks.16.norm1.bias": "model-00001-of-00007.safetensors",
111
+ "audio_encoder.blocks.16.norm1.weight": "model-00001-of-00007.safetensors",
112
+ "audio_encoder.blocks.16.norm2.bias": "model-00001-of-00007.safetensors",
113
+ "audio_encoder.blocks.16.norm2.weight": "model-00001-of-00007.safetensors",
114
+ "audio_encoder.blocks.17.attn.proj.bias": "model-00001-of-00007.safetensors",
115
+ "audio_encoder.blocks.17.attn.proj.weight": "model-00001-of-00007.safetensors",
116
+ "audio_encoder.blocks.17.attn.qkv.bias": "model-00001-of-00007.safetensors",
117
+ "audio_encoder.blocks.17.attn.qkv.weight": "model-00001-of-00007.safetensors",
118
+ "audio_encoder.blocks.17.mlp.fc1.bias": "model-00001-of-00007.safetensors",
119
+ "audio_encoder.blocks.17.mlp.fc1.weight": "model-00001-of-00007.safetensors",
120
+ "audio_encoder.blocks.17.mlp.fc2.bias": "model-00001-of-00007.safetensors",
121
+ "audio_encoder.blocks.17.mlp.fc2.weight": "model-00001-of-00007.safetensors",
122
+ "audio_encoder.blocks.17.norm1.bias": "model-00001-of-00007.safetensors",
123
+ "audio_encoder.blocks.17.norm1.weight": "model-00001-of-00007.safetensors",
124
+ "audio_encoder.blocks.17.norm2.bias": "model-00001-of-00007.safetensors",
125
+ "audio_encoder.blocks.17.norm2.weight": "model-00001-of-00007.safetensors",
126
+ "audio_encoder.blocks.18.attn.proj.bias": "model-00001-of-00007.safetensors",
127
+ "audio_encoder.blocks.18.attn.proj.weight": "model-00001-of-00007.safetensors",
128
+ "audio_encoder.blocks.18.attn.qkv.bias": "model-00001-of-00007.safetensors",
129
+ "audio_encoder.blocks.18.attn.qkv.weight": "model-00001-of-00007.safetensors",
130
+ "audio_encoder.blocks.18.mlp.fc1.bias": "model-00001-of-00007.safetensors",
131
+ "audio_encoder.blocks.18.mlp.fc1.weight": "model-00001-of-00007.safetensors",
132
+ "audio_encoder.blocks.18.mlp.fc2.bias": "model-00001-of-00007.safetensors",
133
+ "audio_encoder.blocks.18.mlp.fc2.weight": "model-00001-of-00007.safetensors",
134
+ "audio_encoder.blocks.18.norm1.bias": "model-00001-of-00007.safetensors",
135
+ "audio_encoder.blocks.18.norm1.weight": "model-00001-of-00007.safetensors",
136
+ "audio_encoder.blocks.18.norm2.bias": "model-00001-of-00007.safetensors",
137
+ "audio_encoder.blocks.18.norm2.weight": "model-00001-of-00007.safetensors",
138
+ "audio_encoder.blocks.19.attn.proj.bias": "model-00001-of-00007.safetensors",
139
+ "audio_encoder.blocks.19.attn.proj.weight": "model-00001-of-00007.safetensors",
140
+ "audio_encoder.blocks.19.attn.qkv.bias": "model-00001-of-00007.safetensors",
141
+ "audio_encoder.blocks.19.attn.qkv.weight": "model-00001-of-00007.safetensors",
142
+ "audio_encoder.blocks.19.mlp.fc1.bias": "model-00001-of-00007.safetensors",
143
+ "audio_encoder.blocks.19.mlp.fc1.weight": "model-00001-of-00007.safetensors",
144
+ "audio_encoder.blocks.19.mlp.fc2.bias": "model-00001-of-00007.safetensors",
145
+ "audio_encoder.blocks.19.mlp.fc2.weight": "model-00001-of-00007.safetensors",
146
+ "audio_encoder.blocks.19.norm1.bias": "model-00001-of-00007.safetensors",
147
+ "audio_encoder.blocks.19.norm1.weight": "model-00001-of-00007.safetensors",
148
+ "audio_encoder.blocks.19.norm2.bias": "model-00001-of-00007.safetensors",
149
+ "audio_encoder.blocks.19.norm2.weight": "model-00001-of-00007.safetensors",
150
+ "audio_encoder.blocks.2.attn.proj.bias": "model-00001-of-00007.safetensors",
151
+ "audio_encoder.blocks.2.attn.proj.weight": "model-00001-of-00007.safetensors",
152
+ "audio_encoder.blocks.2.attn.qkv.bias": "model-00001-of-00007.safetensors",
153
+ "audio_encoder.blocks.2.attn.qkv.weight": "model-00001-of-00007.safetensors",
154
+ "audio_encoder.blocks.2.mlp.fc1.bias": "model-00001-of-00007.safetensors",
155
+ "audio_encoder.blocks.2.mlp.fc1.weight": "model-00001-of-00007.safetensors",
156
+ "audio_encoder.blocks.2.mlp.fc2.bias": "model-00001-of-00007.safetensors",
157
+ "audio_encoder.blocks.2.mlp.fc2.weight": "model-00001-of-00007.safetensors",
158
+ "audio_encoder.blocks.2.norm1.bias": "model-00001-of-00007.safetensors",
159
+ "audio_encoder.blocks.2.norm1.weight": "model-00001-of-00007.safetensors",
160
+ "audio_encoder.blocks.2.norm2.bias": "model-00001-of-00007.safetensors",
161
+ "audio_encoder.blocks.2.norm2.weight": "model-00001-of-00007.safetensors",
162
+ "audio_encoder.blocks.20.attn.proj.bias": "model-00001-of-00007.safetensors",
163
+ "audio_encoder.blocks.20.attn.proj.weight": "model-00001-of-00007.safetensors",
164
+ "audio_encoder.blocks.20.attn.qkv.bias": "model-00001-of-00007.safetensors",
165
+ "audio_encoder.blocks.20.attn.qkv.weight": "model-00001-of-00007.safetensors",
166
+ "audio_encoder.blocks.20.mlp.fc1.bias": "model-00001-of-00007.safetensors",
167
+ "audio_encoder.blocks.20.mlp.fc1.weight": "model-00001-of-00007.safetensors",
168
+ "audio_encoder.blocks.20.mlp.fc2.bias": "model-00001-of-00007.safetensors",
169
+ "audio_encoder.blocks.20.mlp.fc2.weight": "model-00001-of-00007.safetensors",
170
+ "audio_encoder.blocks.20.norm1.bias": "model-00001-of-00007.safetensors",
171
+ "audio_encoder.blocks.20.norm1.weight": "model-00001-of-00007.safetensors",
172
+ "audio_encoder.blocks.20.norm2.bias": "model-00001-of-00007.safetensors",
173
+ "audio_encoder.blocks.20.norm2.weight": "model-00001-of-00007.safetensors",
174
+ "audio_encoder.blocks.21.attn.proj.bias": "model-00001-of-00007.safetensors",
175
+ "audio_encoder.blocks.21.attn.proj.weight": "model-00001-of-00007.safetensors",
176
+ "audio_encoder.blocks.21.attn.qkv.bias": "model-00001-of-00007.safetensors",
177
+ "audio_encoder.blocks.21.attn.qkv.weight": "model-00001-of-00007.safetensors",
178
+ "audio_encoder.blocks.21.mlp.fc1.bias": "model-00001-of-00007.safetensors",
179
+ "audio_encoder.blocks.21.mlp.fc1.weight": "model-00001-of-00007.safetensors",
180
+ "audio_encoder.blocks.21.mlp.fc2.bias": "model-00001-of-00007.safetensors",
181
+ "audio_encoder.blocks.21.mlp.fc2.weight": "model-00001-of-00007.safetensors",
182
+ "audio_encoder.blocks.21.norm1.bias": "model-00001-of-00007.safetensors",
183
+ "audio_encoder.blocks.21.norm1.weight": "model-00001-of-00007.safetensors",
184
+ "audio_encoder.blocks.21.norm2.bias": "model-00001-of-00007.safetensors",
185
+ "audio_encoder.blocks.21.norm2.weight": "model-00001-of-00007.safetensors",
186
+ "audio_encoder.blocks.22.attn.proj.bias": "model-00001-of-00007.safetensors",
187
+ "audio_encoder.blocks.22.attn.proj.weight": "model-00001-of-00007.safetensors",
188
+ "audio_encoder.blocks.22.attn.qkv.bias": "model-00001-of-00007.safetensors",
189
+ "audio_encoder.blocks.22.attn.qkv.weight": "model-00001-of-00007.safetensors",
190
+ "audio_encoder.blocks.22.mlp.fc1.bias": "model-00001-of-00007.safetensors",
191
+ "audio_encoder.blocks.22.mlp.fc1.weight": "model-00001-of-00007.safetensors",
192
+ "audio_encoder.blocks.22.mlp.fc2.bias": "model-00001-of-00007.safetensors",
193
+ "audio_encoder.blocks.22.mlp.fc2.weight": "model-00001-of-00007.safetensors",
194
+ "audio_encoder.blocks.22.norm1.bias": "model-00001-of-00007.safetensors",
195
+ "audio_encoder.blocks.22.norm1.weight": "model-00001-of-00007.safetensors",
196
+ "audio_encoder.blocks.22.norm2.bias": "model-00001-of-00007.safetensors",
197
+ "audio_encoder.blocks.22.norm2.weight": "model-00001-of-00007.safetensors",
198
+ "audio_encoder.blocks.23.attn.proj.bias": "model-00001-of-00007.safetensors",
199
+ "audio_encoder.blocks.23.attn.proj.weight": "model-00001-of-00007.safetensors",
200
+ "audio_encoder.blocks.23.attn.qkv.bias": "model-00001-of-00007.safetensors",
201
+ "audio_encoder.blocks.23.attn.qkv.weight": "model-00001-of-00007.safetensors",
202
+ "audio_encoder.blocks.23.mlp.fc1.bias": "model-00001-of-00007.safetensors",
203
+ "audio_encoder.blocks.23.mlp.fc1.weight": "model-00001-of-00007.safetensors",
204
+ "audio_encoder.blocks.23.mlp.fc2.bias": "model-00001-of-00007.safetensors",
205
+ "audio_encoder.blocks.23.mlp.fc2.weight": "model-00001-of-00007.safetensors",
206
+ "audio_encoder.blocks.23.norm1.bias": "model-00001-of-00007.safetensors",
207
+ "audio_encoder.blocks.23.norm1.weight": "model-00001-of-00007.safetensors",
208
+ "audio_encoder.blocks.23.norm2.bias": "model-00001-of-00007.safetensors",
209
+ "audio_encoder.blocks.23.norm2.weight": "model-00001-of-00007.safetensors",
210
+ "audio_encoder.blocks.24.attn.proj.bias": "model-00001-of-00007.safetensors",
211
+ "audio_encoder.blocks.24.attn.proj.weight": "model-00001-of-00007.safetensors",
212
+ "audio_encoder.blocks.24.attn.qkv.bias": "model-00001-of-00007.safetensors",
213
+ "audio_encoder.blocks.24.attn.qkv.weight": "model-00001-of-00007.safetensors",
214
+ "audio_encoder.blocks.24.mlp.fc1.bias": "model-00001-of-00007.safetensors",
215
+ "audio_encoder.blocks.24.mlp.fc1.weight": "model-00001-of-00007.safetensors",
216
+ "audio_encoder.blocks.24.mlp.fc2.bias": "model-00001-of-00007.safetensors",
217
+ "audio_encoder.blocks.24.mlp.fc2.weight": "model-00001-of-00007.safetensors",
218
+ "audio_encoder.blocks.24.norm1.bias": "model-00001-of-00007.safetensors",
219
+ "audio_encoder.blocks.24.norm1.weight": "model-00001-of-00007.safetensors",
220
+ "audio_encoder.blocks.24.norm2.bias": "model-00001-of-00007.safetensors",
221
+ "audio_encoder.blocks.24.norm2.weight": "model-00001-of-00007.safetensors",
222
+ "audio_encoder.blocks.25.attn.proj.bias": "model-00001-of-00007.safetensors",
223
+ "audio_encoder.blocks.25.attn.proj.weight": "model-00001-of-00007.safetensors",
224
+ "audio_encoder.blocks.25.attn.qkv.bias": "model-00001-of-00007.safetensors",
225
+ "audio_encoder.blocks.25.attn.qkv.weight": "model-00001-of-00007.safetensors",
226
+ "audio_encoder.blocks.25.mlp.fc1.bias": "model-00001-of-00007.safetensors",
227
+ "audio_encoder.blocks.25.mlp.fc1.weight": "model-00001-of-00007.safetensors",
228
+ "audio_encoder.blocks.25.mlp.fc2.bias": "model-00001-of-00007.safetensors",
229
+ "audio_encoder.blocks.25.mlp.fc2.weight": "model-00001-of-00007.safetensors",
230
+ "audio_encoder.blocks.25.norm1.bias": "model-00001-of-00007.safetensors",
231
+ "audio_encoder.blocks.25.norm1.weight": "model-00001-of-00007.safetensors",
232
+ "audio_encoder.blocks.25.norm2.bias": "model-00001-of-00007.safetensors",
233
+ "audio_encoder.blocks.25.norm2.weight": "model-00001-of-00007.safetensors",
234
+ "audio_encoder.blocks.26.attn.proj.bias": "model-00001-of-00007.safetensors",
235
+ "audio_encoder.blocks.26.attn.proj.weight": "model-00001-of-00007.safetensors",
236
+ "audio_encoder.blocks.26.attn.qkv.bias": "model-00001-of-00007.safetensors",
237
+ "audio_encoder.blocks.26.attn.qkv.weight": "model-00001-of-00007.safetensors",
238
+ "audio_encoder.blocks.26.mlp.fc1.bias": "model-00001-of-00007.safetensors",
239
+ "audio_encoder.blocks.26.mlp.fc1.weight": "model-00001-of-00007.safetensors",
240
+ "audio_encoder.blocks.26.mlp.fc2.bias": "model-00001-of-00007.safetensors",
241
+ "audio_encoder.blocks.26.mlp.fc2.weight": "model-00001-of-00007.safetensors",
242
+ "audio_encoder.blocks.26.norm1.bias": "model-00001-of-00007.safetensors",
243
+ "audio_encoder.blocks.26.norm1.weight": "model-00001-of-00007.safetensors",
244
+ "audio_encoder.blocks.26.norm2.bias": "model-00001-of-00007.safetensors",
245
+ "audio_encoder.blocks.26.norm2.weight": "model-00001-of-00007.safetensors",
246
+ "audio_encoder.blocks.27.attn.proj.bias": "model-00001-of-00007.safetensors",
247
+ "audio_encoder.blocks.27.attn.proj.weight": "model-00001-of-00007.safetensors",
248
+ "audio_encoder.blocks.27.attn.qkv.bias": "model-00001-of-00007.safetensors",
249
+ "audio_encoder.blocks.27.attn.qkv.weight": "model-00001-of-00007.safetensors",
250
+ "audio_encoder.blocks.27.mlp.fc1.bias": "model-00001-of-00007.safetensors",
251
+ "audio_encoder.blocks.27.mlp.fc1.weight": "model-00001-of-00007.safetensors",
252
+ "audio_encoder.blocks.27.mlp.fc2.bias": "model-00001-of-00007.safetensors",
253
+ "audio_encoder.blocks.27.mlp.fc2.weight": "model-00001-of-00007.safetensors",
254
+ "audio_encoder.blocks.27.norm1.bias": "model-00001-of-00007.safetensors",
255
+ "audio_encoder.blocks.27.norm1.weight": "model-00001-of-00007.safetensors",
256
+ "audio_encoder.blocks.27.norm2.bias": "model-00001-of-00007.safetensors",
257
+ "audio_encoder.blocks.27.norm2.weight": "model-00001-of-00007.safetensors",
258
+ "audio_encoder.blocks.28.attn.proj.bias": "model-00001-of-00007.safetensors",
259
+ "audio_encoder.blocks.28.attn.proj.weight": "model-00001-of-00007.safetensors",
260
+ "audio_encoder.blocks.28.attn.qkv.bias": "model-00001-of-00007.safetensors",
261
+ "audio_encoder.blocks.28.attn.qkv.weight": "model-00001-of-00007.safetensors",
262
+ "audio_encoder.blocks.28.mlp.fc1.bias": "model-00001-of-00007.safetensors",
263
+ "audio_encoder.blocks.28.mlp.fc1.weight": "model-00001-of-00007.safetensors",
264
+ "audio_encoder.blocks.28.mlp.fc2.bias": "model-00001-of-00007.safetensors",
265
+ "audio_encoder.blocks.28.mlp.fc2.weight": "model-00001-of-00007.safetensors",
266
+ "audio_encoder.blocks.28.norm1.bias": "model-00001-of-00007.safetensors",
267
+ "audio_encoder.blocks.28.norm1.weight": "model-00001-of-00007.safetensors",
268
+ "audio_encoder.blocks.28.norm2.bias": "model-00001-of-00007.safetensors",
269
+ "audio_encoder.blocks.28.norm2.weight": "model-00001-of-00007.safetensors",
270
+ "audio_encoder.blocks.29.attn.proj.bias": "model-00001-of-00007.safetensors",
271
+ "audio_encoder.blocks.29.attn.proj.weight": "model-00001-of-00007.safetensors",
272
+ "audio_encoder.blocks.29.attn.qkv.bias": "model-00001-of-00007.safetensors",
273
+ "audio_encoder.blocks.29.attn.qkv.weight": "model-00001-of-00007.safetensors",
274
+ "audio_encoder.blocks.29.mlp.fc1.bias": "model-00001-of-00007.safetensors",
275
+ "audio_encoder.blocks.29.mlp.fc1.weight": "model-00001-of-00007.safetensors",
276
+ "audio_encoder.blocks.29.mlp.fc2.bias": "model-00001-of-00007.safetensors",
277
+ "audio_encoder.blocks.29.mlp.fc2.weight": "model-00001-of-00007.safetensors",
278
+ "audio_encoder.blocks.29.norm1.bias": "model-00001-of-00007.safetensors",
279
+ "audio_encoder.blocks.29.norm1.weight": "model-00001-of-00007.safetensors",
280
+ "audio_encoder.blocks.29.norm2.bias": "model-00001-of-00007.safetensors",
281
+ "audio_encoder.blocks.29.norm2.weight": "model-00001-of-00007.safetensors",
282
+ "audio_encoder.blocks.3.attn.proj.bias": "model-00001-of-00007.safetensors",
283
+ "audio_encoder.blocks.3.attn.proj.weight": "model-00001-of-00007.safetensors",
284
+ "audio_encoder.blocks.3.attn.qkv.bias": "model-00001-of-00007.safetensors",
285
+ "audio_encoder.blocks.3.attn.qkv.weight": "model-00001-of-00007.safetensors",
286
+ "audio_encoder.blocks.3.mlp.fc1.bias": "model-00001-of-00007.safetensors",
287
+ "audio_encoder.blocks.3.mlp.fc1.weight": "model-00001-of-00007.safetensors",
288
+ "audio_encoder.blocks.3.mlp.fc2.bias": "model-00001-of-00007.safetensors",
289
+ "audio_encoder.blocks.3.mlp.fc2.weight": "model-00001-of-00007.safetensors",
290
+ "audio_encoder.blocks.3.norm1.bias": "model-00001-of-00007.safetensors",
291
+ "audio_encoder.blocks.3.norm1.weight": "model-00001-of-00007.safetensors",
292
+ "audio_encoder.blocks.3.norm2.bias": "model-00001-of-00007.safetensors",
293
+ "audio_encoder.blocks.3.norm2.weight": "model-00001-of-00007.safetensors",
294
+ "audio_encoder.blocks.30.attn.proj.bias": "model-00001-of-00007.safetensors",
295
+ "audio_encoder.blocks.30.attn.proj.weight": "model-00001-of-00007.safetensors",
296
+ "audio_encoder.blocks.30.attn.qkv.bias": "model-00001-of-00007.safetensors",
297
+ "audio_encoder.blocks.30.attn.qkv.weight": "model-00001-of-00007.safetensors",
298
+ "audio_encoder.blocks.30.mlp.fc1.bias": "model-00001-of-00007.safetensors",
299
+ "audio_encoder.blocks.30.mlp.fc1.weight": "model-00001-of-00007.safetensors",
300
+ "audio_encoder.blocks.30.mlp.fc2.bias": "model-00001-of-00007.safetensors",
301
+ "audio_encoder.blocks.30.mlp.fc2.weight": "model-00001-of-00007.safetensors",
302
+ "audio_encoder.blocks.30.norm1.bias": "model-00001-of-00007.safetensors",
303
+ "audio_encoder.blocks.30.norm1.weight": "model-00001-of-00007.safetensors",
304
+ "audio_encoder.blocks.30.norm2.bias": "model-00001-of-00007.safetensors",
305
+ "audio_encoder.blocks.30.norm2.weight": "model-00001-of-00007.safetensors",
306
+ "audio_encoder.blocks.31.attn.proj.bias": "model-00001-of-00007.safetensors",
307
+ "audio_encoder.blocks.31.attn.proj.weight": "model-00001-of-00007.safetensors",
308
+ "audio_encoder.blocks.31.attn.qkv.bias": "model-00001-of-00007.safetensors",
309
+ "audio_encoder.blocks.31.attn.qkv.weight": "model-00001-of-00007.safetensors",
310
+ "audio_encoder.blocks.31.mlp.fc1.bias": "model-00001-of-00007.safetensors",
311
+ "audio_encoder.blocks.31.mlp.fc1.weight": "model-00001-of-00007.safetensors",
312
+ "audio_encoder.blocks.31.mlp.fc2.bias": "model-00001-of-00007.safetensors",
313
+ "audio_encoder.blocks.31.mlp.fc2.weight": "model-00001-of-00007.safetensors",
314
+ "audio_encoder.blocks.31.norm1.bias": "model-00001-of-00007.safetensors",
315
+ "audio_encoder.blocks.31.norm1.weight": "model-00001-of-00007.safetensors",
316
+ "audio_encoder.blocks.31.norm2.bias": "model-00001-of-00007.safetensors",
317
+ "audio_encoder.blocks.31.norm2.weight": "model-00001-of-00007.safetensors",
318
+ "audio_encoder.blocks.4.attn.proj.bias": "model-00001-of-00007.safetensors",
319
+ "audio_encoder.blocks.4.attn.proj.weight": "model-00001-of-00007.safetensors",
320
+ "audio_encoder.blocks.4.attn.qkv.bias": "model-00001-of-00007.safetensors",
321
+ "audio_encoder.blocks.4.attn.qkv.weight": "model-00001-of-00007.safetensors",
322
+ "audio_encoder.blocks.4.mlp.fc1.bias": "model-00001-of-00007.safetensors",
323
+ "audio_encoder.blocks.4.mlp.fc1.weight": "model-00001-of-00007.safetensors",
324
+ "audio_encoder.blocks.4.mlp.fc2.bias": "model-00001-of-00007.safetensors",
325
+ "audio_encoder.blocks.4.mlp.fc2.weight": "model-00001-of-00007.safetensors",
326
+ "audio_encoder.blocks.4.norm1.bias": "model-00001-of-00007.safetensors",
327
+ "audio_encoder.blocks.4.norm1.weight": "model-00001-of-00007.safetensors",
328
+ "audio_encoder.blocks.4.norm2.bias": "model-00001-of-00007.safetensors",
329
+ "audio_encoder.blocks.4.norm2.weight": "model-00001-of-00007.safetensors",
330
+ "audio_encoder.blocks.5.attn.proj.bias": "model-00001-of-00007.safetensors",
331
+ "audio_encoder.blocks.5.attn.proj.weight": "model-00001-of-00007.safetensors",
332
+ "audio_encoder.blocks.5.attn.qkv.bias": "model-00001-of-00007.safetensors",
333
+ "audio_encoder.blocks.5.attn.qkv.weight": "model-00001-of-00007.safetensors",
334
+ "audio_encoder.blocks.5.mlp.fc1.bias": "model-00001-of-00007.safetensors",
335
+ "audio_encoder.blocks.5.mlp.fc1.weight": "model-00001-of-00007.safetensors",
336
+ "audio_encoder.blocks.5.mlp.fc2.bias": "model-00001-of-00007.safetensors",
337
+ "audio_encoder.blocks.5.mlp.fc2.weight": "model-00001-of-00007.safetensors",
338
+ "audio_encoder.blocks.5.norm1.bias": "model-00001-of-00007.safetensors",
339
+ "audio_encoder.blocks.5.norm1.weight": "model-00001-of-00007.safetensors",
340
+ "audio_encoder.blocks.5.norm2.bias": "model-00001-of-00007.safetensors",
341
+ "audio_encoder.blocks.5.norm2.weight": "model-00001-of-00007.safetensors",
342
+ "audio_encoder.blocks.6.attn.proj.bias": "model-00001-of-00007.safetensors",
343
+ "audio_encoder.blocks.6.attn.proj.weight": "model-00001-of-00007.safetensors",
344
+ "audio_encoder.blocks.6.attn.qkv.bias": "model-00001-of-00007.safetensors",
345
+ "audio_encoder.blocks.6.attn.qkv.weight": "model-00001-of-00007.safetensors",
346
+ "audio_encoder.blocks.6.mlp.fc1.bias": "model-00001-of-00007.safetensors",
347
+ "audio_encoder.blocks.6.mlp.fc1.weight": "model-00001-of-00007.safetensors",
348
+ "audio_encoder.blocks.6.mlp.fc2.bias": "model-00001-of-00007.safetensors",
349
+ "audio_encoder.blocks.6.mlp.fc2.weight": "model-00001-of-00007.safetensors",
350
+ "audio_encoder.blocks.6.norm1.bias": "model-00001-of-00007.safetensors",
351
+ "audio_encoder.blocks.6.norm1.weight": "model-00001-of-00007.safetensors",
352
+ "audio_encoder.blocks.6.norm2.bias": "model-00001-of-00007.safetensors",
353
+ "audio_encoder.blocks.6.norm2.weight": "model-00001-of-00007.safetensors",
354
+ "audio_encoder.blocks.7.attn.proj.bias": "model-00001-of-00007.safetensors",
355
+ "audio_encoder.blocks.7.attn.proj.weight": "model-00001-of-00007.safetensors",
356
+ "audio_encoder.blocks.7.attn.qkv.bias": "model-00001-of-00007.safetensors",
357
+ "audio_encoder.blocks.7.attn.qkv.weight": "model-00001-of-00007.safetensors",
358
+ "audio_encoder.blocks.7.mlp.fc1.bias": "model-00001-of-00007.safetensors",
359
+ "audio_encoder.blocks.7.mlp.fc1.weight": "model-00001-of-00007.safetensors",
360
+ "audio_encoder.blocks.7.mlp.fc2.bias": "model-00001-of-00007.safetensors",
361
+ "audio_encoder.blocks.7.mlp.fc2.weight": "model-00001-of-00007.safetensors",
362
+ "audio_encoder.blocks.7.norm1.bias": "model-00001-of-00007.safetensors",
363
+ "audio_encoder.blocks.7.norm1.weight": "model-00001-of-00007.safetensors",
364
+ "audio_encoder.blocks.7.norm2.bias": "model-00001-of-00007.safetensors",
365
+ "audio_encoder.blocks.7.norm2.weight": "model-00001-of-00007.safetensors",
366
+ "audio_encoder.blocks.8.attn.proj.bias": "model-00001-of-00007.safetensors",
367
+ "audio_encoder.blocks.8.attn.proj.weight": "model-00001-of-00007.safetensors",
368
+ "audio_encoder.blocks.8.attn.qkv.bias": "model-00001-of-00007.safetensors",
369
+ "audio_encoder.blocks.8.attn.qkv.weight": "model-00001-of-00007.safetensors",
370
+ "audio_encoder.blocks.8.mlp.fc1.bias": "model-00001-of-00007.safetensors",
371
+ "audio_encoder.blocks.8.mlp.fc1.weight": "model-00001-of-00007.safetensors",
372
+ "audio_encoder.blocks.8.mlp.fc2.bias": "model-00001-of-00007.safetensors",
373
+ "audio_encoder.blocks.8.mlp.fc2.weight": "model-00001-of-00007.safetensors",
374
+ "audio_encoder.blocks.8.norm1.bias": "model-00001-of-00007.safetensors",
375
+ "audio_encoder.blocks.8.norm1.weight": "model-00001-of-00007.safetensors",
376
+ "audio_encoder.blocks.8.norm2.bias": "model-00001-of-00007.safetensors",
377
+ "audio_encoder.blocks.8.norm2.weight": "model-00001-of-00007.safetensors",
378
+ "audio_encoder.blocks.9.attn.proj.bias": "model-00001-of-00007.safetensors",
379
+ "audio_encoder.blocks.9.attn.proj.weight": "model-00001-of-00007.safetensors",
380
+ "audio_encoder.blocks.9.attn.qkv.bias": "model-00001-of-00007.safetensors",
381
+ "audio_encoder.blocks.9.attn.qkv.weight": "model-00001-of-00007.safetensors",
382
+ "audio_encoder.blocks.9.mlp.fc1.bias": "model-00001-of-00007.safetensors",
383
+ "audio_encoder.blocks.9.mlp.fc1.weight": "model-00001-of-00007.safetensors",
384
+ "audio_encoder.blocks.9.mlp.fc2.bias": "model-00001-of-00007.safetensors",
385
+ "audio_encoder.blocks.9.mlp.fc2.weight": "model-00001-of-00007.safetensors",
386
+ "audio_encoder.blocks.9.norm1.bias": "model-00001-of-00007.safetensors",
387
+ "audio_encoder.blocks.9.norm1.weight": "model-00001-of-00007.safetensors",
388
+ "audio_encoder.blocks.9.norm2.bias": "model-00001-of-00007.safetensors",
389
+ "audio_encoder.blocks.9.norm2.weight": "model-00001-of-00007.safetensors",
390
+ "audio_encoder.freq_pos_embed": "model-00001-of-00007.safetensors",
391
+ "audio_encoder.init_bn.bias": "model-00001-of-00007.safetensors",
392
+ "audio_encoder.init_bn.num_batches_tracked": "model-00001-of-00007.safetensors",
393
+ "audio_encoder.init_bn.running_mean": "model-00001-of-00007.safetensors",
394
+ "audio_encoder.init_bn.running_var": "model-00001-of-00007.safetensors",
395
+ "audio_encoder.init_bn.weight": "model-00001-of-00007.safetensors",
396
+ "audio_encoder.norm.bias": "model-00001-of-00007.safetensors",
397
+ "audio_encoder.norm.weight": "model-00001-of-00007.safetensors",
398
+ "audio_encoder.patch_embed.proj.bias": "model-00001-of-00007.safetensors",
399
+ "audio_encoder.patch_embed.proj.weight": "model-00001-of-00007.safetensors",
400
+ "audio_encoder.time_pos_embed": "model-00001-of-00007.safetensors",
401
+ "audio_projector.net.0.bias": "model-00001-of-00007.safetensors",
402
+ "audio_projector.net.0.weight": "model-00001-of-00007.safetensors",
403
+ "audio_projector.net.2.bias": "model-00001-of-00007.safetensors",
404
+ "audio_projector.net.2.weight": "model-00001-of-00007.safetensors",
405
+ "decoder.lm_head.weight": "model-00007-of-00007.safetensors",
406
+ "decoder.model.embed_tokens.weight": "model-00001-of-00007.safetensors",
407
+ "decoder.model.layers.0.input_layernorm.weight": "model-00002-of-00007.safetensors",
408
+ "decoder.model.layers.0.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
409
+ "decoder.model.layers.0.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
410
+ "decoder.model.layers.0.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
411
+ "decoder.model.layers.0.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
412
+ "decoder.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
413
+ "decoder.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
414
+ "decoder.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
415
+ "decoder.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
416
+ "decoder.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
417
+ "decoder.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
418
+ "decoder.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
419
+ "decoder.model.layers.1.input_layernorm.weight": "model-00002-of-00007.safetensors",
420
+ "decoder.model.layers.1.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
421
+ "decoder.model.layers.1.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
422
+ "decoder.model.layers.1.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
423
+ "decoder.model.layers.1.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
424
+ "decoder.model.layers.1.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
425
+ "decoder.model.layers.1.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
426
+ "decoder.model.layers.1.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
427
+ "decoder.model.layers.1.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
428
+ "decoder.model.layers.1.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
429
+ "decoder.model.layers.1.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
430
+ "decoder.model.layers.1.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
431
+ "decoder.model.layers.10.input_layernorm.weight": "model-00004-of-00007.safetensors",
432
+ "decoder.model.layers.10.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
433
+ "decoder.model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
434
+ "decoder.model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
435
+ "decoder.model.layers.10.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
436
+ "decoder.model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
437
+ "decoder.model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
438
+ "decoder.model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
439
+ "decoder.model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
440
+ "decoder.model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
441
+ "decoder.model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
442
+ "decoder.model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
443
+ "decoder.model.layers.11.input_layernorm.weight": "model-00004-of-00007.safetensors",
444
+ "decoder.model.layers.11.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
445
+ "decoder.model.layers.11.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
446
+ "decoder.model.layers.11.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
447
+ "decoder.model.layers.11.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
448
+ "decoder.model.layers.11.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
449
+ "decoder.model.layers.11.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
450
+ "decoder.model.layers.11.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
451
+ "decoder.model.layers.11.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
452
+ "decoder.model.layers.11.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
453
+ "decoder.model.layers.11.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
454
+ "decoder.model.layers.11.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
455
+ "decoder.model.layers.12.input_layernorm.weight": "model-00004-of-00007.safetensors",
456
+ "decoder.model.layers.12.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
457
+ "decoder.model.layers.12.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
458
+ "decoder.model.layers.12.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
459
+ "decoder.model.layers.12.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
460
+ "decoder.model.layers.12.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
461
+ "decoder.model.layers.12.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
462
+ "decoder.model.layers.12.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
463
+ "decoder.model.layers.12.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
464
+ "decoder.model.layers.12.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
465
+ "decoder.model.layers.12.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
466
+ "decoder.model.layers.12.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
467
+ "decoder.model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
468
+ "decoder.model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
469
+ "decoder.model.layers.13.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
470
+ "decoder.model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
471
+ "decoder.model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
472
+ "decoder.model.layers.13.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
473
+ "decoder.model.layers.13.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
474
+ "decoder.model.layers.13.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
475
+ "decoder.model.layers.13.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
476
+ "decoder.model.layers.13.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
477
+ "decoder.model.layers.13.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
478
+ "decoder.model.layers.13.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
479
+ "decoder.model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
480
+ "decoder.model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
481
+ "decoder.model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
482
+ "decoder.model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
483
+ "decoder.model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
484
+ "decoder.model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
485
+ "decoder.model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
486
+ "decoder.model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
487
+ "decoder.model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
488
+ "decoder.model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
489
+ "decoder.model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
490
+ "decoder.model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
491
+ "decoder.model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
492
+ "decoder.model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
493
+ "decoder.model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
494
+ "decoder.model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
495
+ "decoder.model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
496
+ "decoder.model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
497
+ "decoder.model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
498
+ "decoder.model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
499
+ "decoder.model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
500
+ "decoder.model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
501
+ "decoder.model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
502
+ "decoder.model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
503
+ "decoder.model.layers.16.input_layernorm.weight": "model-00005-of-00007.safetensors",
504
+ "decoder.model.layers.16.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
505
+ "decoder.model.layers.16.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
506
+ "decoder.model.layers.16.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
507
+ "decoder.model.layers.16.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
508
+ "decoder.model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
509
+ "decoder.model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
510
+ "decoder.model.layers.16.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
511
+ "decoder.model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
512
+ "decoder.model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
513
+ "decoder.model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
514
+ "decoder.model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
515
+ "decoder.model.layers.17.input_layernorm.weight": "model-00005-of-00007.safetensors",
516
+ "decoder.model.layers.17.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
517
+ "decoder.model.layers.17.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
518
+ "decoder.model.layers.17.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
519
+ "decoder.model.layers.17.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
520
+ "decoder.model.layers.17.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
521
+ "decoder.model.layers.17.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
522
+ "decoder.model.layers.17.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
523
+ "decoder.model.layers.17.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
524
+ "decoder.model.layers.17.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
525
+ "decoder.model.layers.17.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
526
+ "decoder.model.layers.17.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
527
+ "decoder.model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
528
+ "decoder.model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
529
+ "decoder.model.layers.18.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
530
+ "decoder.model.layers.18.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
531
+ "decoder.model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
532
+ "decoder.model.layers.18.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
533
+ "decoder.model.layers.18.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
534
+ "decoder.model.layers.18.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
535
+ "decoder.model.layers.18.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
536
+ "decoder.model.layers.18.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
537
+ "decoder.model.layers.18.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
538
+ "decoder.model.layers.18.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
539
+ "decoder.model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
540
+ "decoder.model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
541
+ "decoder.model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
542
+ "decoder.model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
543
+ "decoder.model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
544
+ "decoder.model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
545
+ "decoder.model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
546
+ "decoder.model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
547
+ "decoder.model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
548
+ "decoder.model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
549
+ "decoder.model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
550
+ "decoder.model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
551
+ "decoder.model.layers.2.input_layernorm.weight": "model-00002-of-00007.safetensors",
552
+ "decoder.model.layers.2.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
553
+ "decoder.model.layers.2.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
554
+ "decoder.model.layers.2.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
555
+ "decoder.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
556
+ "decoder.model.layers.2.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
557
+ "decoder.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
558
+ "decoder.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
559
+ "decoder.model.layers.2.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
560
+ "decoder.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
561
+ "decoder.model.layers.2.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
562
+ "decoder.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
563
+ "decoder.model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
564
+ "decoder.model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
565
+ "decoder.model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
566
+ "decoder.model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
567
+ "decoder.model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
568
+ "decoder.model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
569
+ "decoder.model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
570
+ "decoder.model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
571
+ "decoder.model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
572
+ "decoder.model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
573
+ "decoder.model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
574
+ "decoder.model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
575
+ "decoder.model.layers.21.input_layernorm.weight": "model-00006-of-00007.safetensors",
576
+ "decoder.model.layers.21.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
577
+ "decoder.model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
578
+ "decoder.model.layers.21.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
579
+ "decoder.model.layers.21.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
580
+ "decoder.model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
581
+ "decoder.model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
582
+ "decoder.model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
583
+ "decoder.model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
584
+ "decoder.model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
585
+ "decoder.model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
586
+ "decoder.model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
587
+ "decoder.model.layers.22.input_layernorm.weight": "model-00006-of-00007.safetensors",
588
+ "decoder.model.layers.22.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
589
+ "decoder.model.layers.22.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
590
+ "decoder.model.layers.22.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
591
+ "decoder.model.layers.22.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
592
+ "decoder.model.layers.22.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
593
+ "decoder.model.layers.22.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
594
+ "decoder.model.layers.22.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
595
+ "decoder.model.layers.22.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
596
+ "decoder.model.layers.22.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
597
+ "decoder.model.layers.22.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
598
+ "decoder.model.layers.22.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
599
+ "decoder.model.layers.23.input_layernorm.weight": "model-00006-of-00007.safetensors",
600
+ "decoder.model.layers.23.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
601
+ "decoder.model.layers.23.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
602
+ "decoder.model.layers.23.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
603
+ "decoder.model.layers.23.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
604
+ "decoder.model.layers.23.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
605
+ "decoder.model.layers.23.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
606
+ "decoder.model.layers.23.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
607
+ "decoder.model.layers.23.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
608
+ "decoder.model.layers.23.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
609
+ "decoder.model.layers.23.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
610
+ "decoder.model.layers.23.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
611
+ "decoder.model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
612
+ "decoder.model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
613
+ "decoder.model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
614
+ "decoder.model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
615
+ "decoder.model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
616
+ "decoder.model.layers.24.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
617
+ "decoder.model.layers.24.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
618
+ "decoder.model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
619
+ "decoder.model.layers.24.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
620
+ "decoder.model.layers.24.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
621
+ "decoder.model.layers.24.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
622
+ "decoder.model.layers.24.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
623
+ "decoder.model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
624
+ "decoder.model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
625
+ "decoder.model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
626
+ "decoder.model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
627
+ "decoder.model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
628
+ "decoder.model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
629
+ "decoder.model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
630
+ "decoder.model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
631
+ "decoder.model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
632
+ "decoder.model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
633
+ "decoder.model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
634
+ "decoder.model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
635
+ "decoder.model.layers.26.input_layernorm.weight": "model-00007-of-00007.safetensors",
636
+ "decoder.model.layers.26.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
637
+ "decoder.model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
638
+ "decoder.model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
639
+ "decoder.model.layers.26.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
640
+ "decoder.model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
641
+ "decoder.model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
642
+ "decoder.model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
643
+ "decoder.model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
644
+ "decoder.model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
645
+ "decoder.model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
646
+ "decoder.model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
647
+ "decoder.model.layers.27.input_layernorm.weight": "model-00007-of-00007.safetensors",
648
+ "decoder.model.layers.27.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
649
+ "decoder.model.layers.27.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
650
+ "decoder.model.layers.27.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
651
+ "decoder.model.layers.27.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
652
+ "decoder.model.layers.27.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
653
+ "decoder.model.layers.27.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
654
+ "decoder.model.layers.27.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
655
+ "decoder.model.layers.27.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
656
+ "decoder.model.layers.27.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
657
+ "decoder.model.layers.27.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
658
+ "decoder.model.layers.27.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
659
+ "decoder.model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
660
+ "decoder.model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
661
+ "decoder.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
662
+ "decoder.model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
663
+ "decoder.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
664
+ "decoder.model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
665
+ "decoder.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
666
+ "decoder.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
667
+ "decoder.model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
668
+ "decoder.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
669
+ "decoder.model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
670
+ "decoder.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
671
+ "decoder.model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
672
+ "decoder.model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
673
+ "decoder.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
674
+ "decoder.model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
675
+ "decoder.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
676
+ "decoder.model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
677
+ "decoder.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
678
+ "decoder.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
679
+ "decoder.model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
680
+ "decoder.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
681
+ "decoder.model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
682
+ "decoder.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
683
+ "decoder.model.layers.5.input_layernorm.weight": "model-00003-of-00007.safetensors",
684
+ "decoder.model.layers.5.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
685
+ "decoder.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
686
+ "decoder.model.layers.5.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
687
+ "decoder.model.layers.5.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
688
+ "decoder.model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
689
+ "decoder.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
690
+ "decoder.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
691
+ "decoder.model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
692
+ "decoder.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
693
+ "decoder.model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
694
+ "decoder.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
695
+ "decoder.model.layers.6.input_layernorm.weight": "model-00003-of-00007.safetensors",
696
+ "decoder.model.layers.6.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
697
+ "decoder.model.layers.6.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
698
+ "decoder.model.layers.6.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
699
+ "decoder.model.layers.6.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
700
+ "decoder.model.layers.6.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
701
+ "decoder.model.layers.6.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
702
+ "decoder.model.layers.6.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
703
+ "decoder.model.layers.6.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
704
+ "decoder.model.layers.6.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
705
+ "decoder.model.layers.6.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
706
+ "decoder.model.layers.6.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
707
+ "decoder.model.layers.7.input_layernorm.weight": "model-00003-of-00007.safetensors",
708
+ "decoder.model.layers.7.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
709
+ "decoder.model.layers.7.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
710
+ "decoder.model.layers.7.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
711
+ "decoder.model.layers.7.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
712
+ "decoder.model.layers.7.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
713
+ "decoder.model.layers.7.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
714
+ "decoder.model.layers.7.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
715
+ "decoder.model.layers.7.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
716
+ "decoder.model.layers.7.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
717
+ "decoder.model.layers.7.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
718
+ "decoder.model.layers.7.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
719
+ "decoder.model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
720
+ "decoder.model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
721
+ "decoder.model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
722
+ "decoder.model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
723
+ "decoder.model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
724
+ "decoder.model.layers.8.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
725
+ "decoder.model.layers.8.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
726
+ "decoder.model.layers.8.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
727
+ "decoder.model.layers.8.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
728
+ "decoder.model.layers.8.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
729
+ "decoder.model.layers.8.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
730
+ "decoder.model.layers.8.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
731
+ "decoder.model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
732
+ "decoder.model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
733
+ "decoder.model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
734
+ "decoder.model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
735
+ "decoder.model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
736
+ "decoder.model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
737
+ "decoder.model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
738
+ "decoder.model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
739
+ "decoder.model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
740
+ "decoder.model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
741
+ "decoder.model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
742
+ "decoder.model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
743
+ "decoder.model.norm.weight": "model-00007-of-00007.safetensors"
744
+ }
745
+ }
modeling_midashenglm.py ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import collections.abc
3
+ from dataclasses import dataclass
4
+ from typing import Any, Callable, Iterable, List, Optional, Sequence, Tuple, Union, cast
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torchaudio.functional as F
9
+ from torch import Tensor
10
+ from torch.nn.functional import scaled_dot_product_attention
11
+ from transformers import GenerationMixin, PreTrainedModel
12
+ from transformers.cache_utils import Cache
13
+ from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
14
+ from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
15
+ Qwen2_5OmniTextConfig,
16
+ )
17
+ from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
18
+ Qwen2_5OmniThinkerTextModel,
19
+ )
20
+ from transformers.utils import can_return_tuple
21
+
22
+ from .configuration_midashenglm import DashengConfig, MiDashengLMConfig
23
+
24
+ _Tuple2 = Union[int, Tuple[int, int], Sequence[int]]
25
+
26
+
27
+ def _resolve_tuple2(x: _Tuple2) -> Tuple[int, int]:
28
+ if isinstance(x, collections.abc.Sequence):
29
+ assert len(x) == 2, (
30
+ f"Expected a sequence of length 2, got {x} with length {len(x)}"
31
+ )
32
+ return cast(Tuple[int, int], tuple(x))
33
+ return (x, x)
34
+
35
+
36
+ class AudioPatchEmbed(nn.Module):
37
+ def __init__(
38
+ self,
39
+ input_size: _Tuple2 = 64,
40
+ patch_size: _Tuple2 = 16,
41
+ patch_stride: _Tuple2 = 16,
42
+ in_chans: int = 1,
43
+ embed_dim: int = 768,
44
+ norm_layer: Optional[Callable] = None,
45
+ flatten: bool = False,
46
+ ):
47
+ super().__init__()
48
+ self.input_size = _resolve_tuple2(input_size)
49
+ self.patch_size = _resolve_tuple2(patch_size)
50
+ self.patch_stride = _resolve_tuple2(patch_stride)
51
+ self.grid_size = (
52
+ self.input_size[0] // self.patch_stride[0],
53
+ self.input_size[1] // self.patch_stride[1],
54
+ )
55
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
56
+ self.flatten = flatten
57
+
58
+ self.proj = nn.Conv2d(
59
+ in_chans,
60
+ embed_dim,
61
+ kernel_size=self.patch_size,
62
+ stride=self.patch_stride,
63
+ )
64
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
65
+
66
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
67
+ x = self.proj(x)
68
+ if self.flatten:
69
+ x = torch.permute(
70
+ torch.flatten(x, 2, 3), (0, 2, 1)
71
+ ) # rearrange(x, "b c f t -> b (f t) c")
72
+ x = self.norm(x)
73
+ return x
74
+
75
+
76
+ class LayerScale(nn.Module):
77
+ def __init__(self, dim, init_values=1e-5, inplace=False):
78
+ super().__init__()
79
+ self.inplace = inplace
80
+ self.gamma = nn.Parameter(init_values * torch.ones(dim))
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ return x.mul_(self.gamma) if self.inplace else x * self.gamma
84
+
85
+
86
+ class DashengMlp(nn.Module):
87
+ def __init__(
88
+ self,
89
+ in_features: int,
90
+ hidden_features: Optional[int] = None,
91
+ out_features: Optional[int] = None,
92
+ drop: float = 0.0,
93
+ ):
94
+ super().__init__()
95
+ out_features = out_features or in_features
96
+ hidden_features = hidden_features or in_features
97
+ self.fc1 = nn.Linear(in_features, hidden_features)
98
+ self.act = nn.GELU()
99
+ self.fc2 = nn.Linear(hidden_features, out_features)
100
+ self.drop = nn.Dropout(drop)
101
+
102
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
103
+ x = self.fc1(x)
104
+ x = self.act(x)
105
+ x = self.drop(x)
106
+ x = self.fc2(x)
107
+ x = self.drop(x)
108
+ return x
109
+
110
+
111
+ class DashengAttention(nn.Module):
112
+ def __init__(
113
+ self,
114
+ dim: int,
115
+ num_heads: int = 8,
116
+ qkv_bias: bool = False,
117
+ attn_drop: float = 0.0,
118
+ proj_drop: float = 0.0,
119
+ ):
120
+ super().__init__()
121
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
122
+ self.num_heads = num_heads
123
+ head_dim = dim // num_heads
124
+ self.scale = head_dim**-0.5
125
+
126
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
127
+ self.attn_drop = nn.Dropout(attn_drop)
128
+ self.proj = nn.Linear(dim, dim)
129
+ self.proj_drop = nn.Dropout(proj_drop)
130
+
131
+ def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
132
+ B, N, C = x.shape
133
+ q, k, v = (
134
+ self.qkv(x)
135
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
136
+ .permute(2, 0, 3, 1, 4)
137
+ .unbind(0)
138
+ )
139
+ x = scaled_dot_product_attention(
140
+ q,
141
+ k,
142
+ v,
143
+ attn_mask=mask[:, None, None, :] if mask is not None else None,
144
+ )
145
+ x = x.transpose(1, 2).reshape(B, N, C)
146
+ x = self.proj(x)
147
+ x = self.proj_drop(x)
148
+ return x
149
+
150
+
151
+ class DashengBlock(nn.Module):
152
+ def __init__(
153
+ self,
154
+ dim: int,
155
+ num_heads: int,
156
+ mlp_ratio: float = 4.0,
157
+ qkv_bias: bool = False,
158
+ drop: float = 0.0,
159
+ attn_drop: float = 0.0,
160
+ init_values: Optional[float] = None,
161
+ ):
162
+ super().__init__()
163
+ self.norm1 = nn.LayerNorm(dim, eps=1e-6)
164
+ self.attn = DashengAttention(
165
+ dim,
166
+ num_heads=num_heads,
167
+ qkv_bias=qkv_bias,
168
+ attn_drop=attn_drop,
169
+ proj_drop=drop,
170
+ )
171
+ self.ls1 = (
172
+ LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
173
+ )
174
+
175
+ self.norm2 = nn.LayerNorm(dim, eps=1e-6)
176
+ self.mlp = DashengMlp(
177
+ in_features=dim,
178
+ hidden_features=int(dim * mlp_ratio),
179
+ drop=drop,
180
+ )
181
+ self.ls2 = (
182
+ LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
183
+ )
184
+
185
+ # Kwargs usually has a mask parameter that is passed to Attention
186
+ def forward(
187
+ self,
188
+ x: torch.Tensor,
189
+ mask: Optional[torch.Tensor] = None,
190
+ ) -> torch.Tensor:
191
+ x = x + self.ls1(self.attn(self.norm1(x), mask))
192
+ x = x + self.ls2(self.mlp(self.norm2(x)))
193
+ return x
194
+
195
+
196
+ class DashengFrontend(nn.Module):
197
+ def __init__(self, config: DashengConfig):
198
+ super().__init__()
199
+ self.config = config
200
+
201
+ spectrogram_window = torch.hann_window(self.config.win_length)
202
+ self.register_buffer(
203
+ "spectrogram_window",
204
+ spectrogram_window,
205
+ persistent=False,
206
+ )
207
+ self.spectrogram_window: torch.Tensor
208
+
209
+ melscale_fbanks = F.melscale_fbanks(
210
+ n_freqs=self.config.n_fft // 2 + 1,
211
+ f_min=self.config.f_min,
212
+ f_max=self.config.f_max,
213
+ n_mels=self.config.n_mels,
214
+ sample_rate=self.config.sample_rate,
215
+ )
216
+ self.register_buffer("melscale_fbanks", melscale_fbanks, persistent=False)
217
+ self.melscale_fbanks: torch.Tensor
218
+
219
+ def forward(self, waveform: torch.Tensor) -> torch.Tensor:
220
+ spectrogram = F.spectrogram(
221
+ waveform=waveform.to(torch.float32),
222
+ pad=0,
223
+ window=self.spectrogram_window,
224
+ n_fft=self.config.n_fft,
225
+ hop_length=self.config.hop_length,
226
+ win_length=self.config.win_length,
227
+ power=2,
228
+ normalized=False,
229
+ center=self.config.center,
230
+ )
231
+ mel_spectrogram = (spectrogram.mT @ self.melscale_fbanks.to(torch.float32)).mT
232
+ # x has shape [batch, freq, time].
233
+ # F.amplitude_to_DB accepts inputs shaped as:
234
+ # - [freq, time]
235
+ # - [channel, freq, time]
236
+ # - [..., channel, freq, time]
237
+ # Here we insert a channel dimension of size 1 before calling it,
238
+ # then remove that extra dimension afterward.
239
+ log_mel_spectrogram = F.amplitude_to_DB(
240
+ mel_spectrogram.unsqueeze(1),
241
+ multiplier=10,
242
+ amin=1e-10,
243
+ db_multiplier=0,
244
+ top_db=120,
245
+ ).squeeze(1)
246
+ return log_mel_spectrogram.to(waveform.dtype)
247
+
248
+
249
+ class DashengAudioTransformer(PreTrainedModel):
250
+ config_class = DashengConfig
251
+ supports_gradient_checkpointing = True
252
+
253
+ def __init__(self, config: DashengConfig):
254
+ super().__init__(config)
255
+
256
+ self.target_length = config.target_length
257
+ self.embed_dim = config.embed_dim
258
+ self.hop_length = config.hop_length
259
+ self.gradient_checkpointing = False
260
+
261
+ self.front_end = DashengFrontend(config)
262
+
263
+ self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01)
264
+
265
+ self.patch_embed = AudioPatchEmbed(
266
+ input_size=(config.n_mels, config.target_length),
267
+ embed_dim=config.embed_dim,
268
+ in_chans=config.input_channels,
269
+ patch_size=config.patch_size,
270
+ flatten=False,
271
+ patch_stride=config.patch_stride,
272
+ )
273
+
274
+ self.time_pos_embed = nn.Parameter(
275
+ torch.randn(1, config.embed_dim, 1, self.patch_embed.grid_size[1]) * 0.02
276
+ )
277
+ self.freq_pos_embed = nn.Parameter(
278
+ torch.randn(1, config.embed_dim, self.patch_embed.grid_size[0], 1) * 0.02
279
+ )
280
+
281
+ self.pos_drop = nn.Dropout(p=config.drop_rate)
282
+ self.blocks = nn.ModuleList(
283
+ DashengBlock(
284
+ dim=config.embed_dim,
285
+ num_heads=config.num_heads,
286
+ mlp_ratio=config.mlp_ratio,
287
+ qkv_bias=config.qkv_bias,
288
+ init_values=config.init_values,
289
+ drop=config.drop_rate,
290
+ attn_drop=config.attn_drop_rate,
291
+ )
292
+ for _ in range(config.depth)
293
+ )
294
+ self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)
295
+
296
+ self.post_init()
297
+
298
+ def forward_features(
299
+ self,
300
+ x: torch.Tensor,
301
+ mask: Optional[torch.Tensor] = None,
302
+ ) -> torch.Tensor:
303
+ t = x.shape[-1]
304
+ x = x + self.time_pos_embed[:, :, :, :t]
305
+ x = (
306
+ x + self.freq_pos_embed[:, :, :, :]
307
+ ) # Just to support __getitem__ in posembed
308
+ x = torch.permute(
309
+ torch.flatten(x, 2, 3), (0, 2, 1)
310
+ ) # rearrange(x, "b c f t -> b (f t) c")
311
+ x = self.pos_drop(x)
312
+ for block in self.blocks:
313
+ if self.gradient_checkpointing and self.training:
314
+ x = self._gradient_checkpointing_func(block, x, mask)
315
+ else:
316
+ x = block(x, mask)
317
+ x = self.norm(x)
318
+ return x
319
+
320
+ def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
321
+ batch_size = len(lengths)
322
+ idx = torch.arange(max_length, device=lengths.device)
323
+ idx = idx.repeat(batch_size).view(batch_size, max_length)
324
+ mask = (idx < lengths.unsqueeze(-1)).bool()
325
+ return mask
326
+
327
+ def forward(
328
+ self,
329
+ x: torch.Tensor,
330
+ x_length: Optional[torch.Tensor] = None,
331
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
332
+ x = self.front_end(x)
333
+ target_length_in_patches = self.target_length // 4
334
+ x = x.unsqueeze(1)
335
+ x = torch.permute(x, (0, 2, 1, 3))
336
+ x = self.init_bn(x)
337
+ x = torch.permute(x, (0, 2, 1, 3))
338
+
339
+ x = self.patch_embed(x)
340
+ t = x.shape[-1]
341
+
342
+ input_splits = x.split(target_length_in_patches, dim=-1)
343
+
344
+ if x_length is not None:
345
+ assert len(x_length) == len(x), (
346
+ "batchsizes of input x and x_length need to be same"
347
+ )
348
+ assert x_length.ndim == 1, "Lengths are of size (B,)"
349
+ scaled_lengths = (x_length / (self.hop_length * 4)).long()
350
+ mask = self._to_mask(max_length=t, lengths=scaled_lengths)
351
+ split_masks = mask.split(target_length_in_patches, dim=-1)
352
+ else:
353
+ mask = None
354
+ split_masks = [None] * len(input_splits)
355
+
356
+ outputs = []
357
+
358
+ for split_x, split_mask in zip(input_splits, split_masks):
359
+ forward_kwargs = {}
360
+ forward_kwargs["mask"] = split_mask
361
+ split_x = self.forward_features(split_x, **forward_kwargs)
362
+ outputs.append(split_x)
363
+ x = torch.cat(outputs, dim=1)
364
+ return x, mask
365
+
366
+
367
+ class AudioProjectorSubsample(nn.Module):
368
+ def __init__(
369
+ self,
370
+ in_dim: int,
371
+ out_dim: int,
372
+ downsample_rate=5,
373
+ dtype: Optional[torch.dtype] = None,
374
+ ):
375
+ super().__init__()
376
+ self.k = downsample_rate
377
+ self.net = nn.Sequential(
378
+ nn.Linear(in_dim * self.k, out_dim, dtype=dtype),
379
+ nn.GELU(),
380
+ nn.Linear(out_dim, out_dim, dtype=dtype),
381
+ )
382
+
383
+ def forward(self, x, mask=None):
384
+ batch_size, seq_len, dim = x.shape
385
+ num_frames_to_discard = seq_len % self.k
386
+ if num_frames_to_discard > 0:
387
+ x = x[:, :-num_frames_to_discard, :]
388
+ if mask is not None:
389
+ mask = mask[:, :-num_frames_to_discard]
390
+ if mask is None:
391
+ mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
392
+ x = x.reshape(
393
+ batch_size, -1, self.k * dim
394
+ ) # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
395
+ x = self.net(x)
396
+ mask = mask.reshape(
397
+ batch_size, -1, self.k
398
+ ) # rearrange(mask, "b (s k) -> b s k", k=self.k)
399
+ mask = mask.any(dim=-1).long()
400
+ return x, mask
401
+
402
+
403
+ @dataclass
404
+ class Qwen25OmniTextModelOutput(ModelOutput):
405
+ loss: Optional[torch.FloatTensor] = None
406
+ logits: Optional[torch.FloatTensor] = None
407
+ past_key_values: Optional[Cache] = None
408
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
409
+ attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
410
+
411
+
412
+ class Qwen25OmniThinkerTextOnlyDecoder(PreTrainedModel, GenerationMixin):
413
+ config_class = Qwen2_5OmniTextConfig
414
+ _supports_flash_attn_2 = True
415
+ _supports_sdpa = True
416
+ _supports_cache_class = True
417
+ _supports_static_cache = True
418
+
419
+ def __init__(self, config: Qwen2_5OmniTextConfig):
420
+ super().__init__(config)
421
+ self.model = Qwen2_5OmniThinkerTextModel._from_config(config)
422
+ self.lm_head = nn.Linear(
423
+ config.hidden_size,
424
+ config.vocab_size,
425
+ bias=False,
426
+ )
427
+ self.post_init()
428
+
429
+ @can_return_tuple
430
+ def forward(
431
+ self,
432
+ input_ids: Optional[torch.LongTensor] = None,
433
+ attention_mask: Optional[torch.Tensor] = None,
434
+ position_ids: Optional[torch.LongTensor] = None,
435
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
436
+ inputs_embeds: Optional[torch.FloatTensor] = None,
437
+ use_cache: Optional[bool] = None,
438
+ output_attentions: Optional[bool] = None,
439
+ output_hidden_states: Optional[bool] = None,
440
+ cache_position: Optional[torch.LongTensor] = None,
441
+ labels: Optional[torch.Tensor] = None,
442
+ **kwargs,
443
+ ) -> Union[Tuple, Qwen25OmniTextModelOutput]:
444
+ if attention_mask is not None and position_ids is None:
445
+ position_ids = (
446
+ attention_mask.long()
447
+ .cumsum(dim=-1)
448
+ .masked_fill_(attention_mask == 0, 1)
449
+ - 1
450
+ )
451
+
452
+ outputs: BaseModelOutputWithPast = self.model(
453
+ input_ids=input_ids,
454
+ attention_mask=attention_mask,
455
+ position_ids=position_ids,
456
+ past_key_values=past_key_values,
457
+ inputs_embeds=inputs_embeds,
458
+ use_cache=use_cache,
459
+ output_attentions=output_attentions,
460
+ output_hidden_states=output_hidden_states,
461
+ cache_position=cache_position,
462
+ return_dict=True,
463
+ )
464
+ hidden_states = outputs.last_hidden_state
465
+ logits = self.lm_head(hidden_states)
466
+
467
+ loss = (
468
+ self.loss_function(
469
+ logits=logits,
470
+ labels=labels,
471
+ vocab_size=self.config.vocab_size,
472
+ **kwargs,
473
+ )
474
+ if labels is not None
475
+ else None
476
+ )
477
+
478
+ return Qwen25OmniTextModelOutput(
479
+ loss=loss,
480
+ logits=logits,
481
+ past_key_values=outputs.past_key_values,
482
+ hidden_states=outputs.hidden_states,
483
+ attentions=outputs.attentions,
484
+ )
485
+
486
+
487
+ class MiDashengLMModel(PreTrainedModel):
488
+ config_class = MiDashengLMConfig
489
+ _supports_flash_attn_2 = True
490
+ _supports_sdpa = True
491
+ _supports_cache_class = True
492
+ _supports_static_cache = True
493
+ supports_gradient_checkpointing = True
494
+
495
+ def __init__(self, config: MiDashengLMConfig):
496
+ super().__init__(config)
497
+
498
+ self.audio_token_id = config.audio_token_id
499
+
500
+ self.audio_encoder = DashengAudioTransformer._from_config(
501
+ config.audio_encoder_config,
502
+ )
503
+ self.audio_projector = AudioProjectorSubsample(
504
+ self.audio_encoder.embed_dim,
505
+ config.text_config.hidden_size,
506
+ config.subsample_factor,
507
+ )
508
+ self.decoder = Qwen25OmniThinkerTextOnlyDecoder._from_config(
509
+ config.text_config,
510
+ attn_implementation=config._attn_implementation,
511
+ )
512
+
513
+ self.post_init()
514
+
515
+ def get_input_embeddings(self):
516
+ return self.decoder.model.embed_tokens
517
+
518
+ def get_output_embeddings(self):
519
+ return self.decoder.lm_head
520
+
521
+ def _forward_audio_encoder(
522
+ self,
523
+ audios: torch.Tensor,
524
+ audio_length: Optional[Iterable[int]],
525
+ ) -> torch.Tensor:
526
+ encoder_out, encoder_atts = self.audio_encoder(audios, audio_length)
527
+
528
+ # audio projector
529
+ encoder_out, encoder_atts = self.audio_projector(encoder_out, encoder_atts)
530
+
531
+ return encoder_out
532
+
533
+ def _prepare_inputs_embeds(
534
+ self,
535
+ input_ids: Optional[torch.Tensor],
536
+ input_values: Optional[torch.Tensor],
537
+ inputs_embeds: Optional[torch.Tensor],
538
+ audio_length: Optional[Iterable[int]] = None,
539
+ ) -> torch.Tensor:
540
+ if input_ids is not None:
541
+ if inputs_embeds is not None:
542
+ raise ValueError(
543
+ "Both `inputs_embeds` and `input_ids` are passed. Please pass only one of them."
544
+ )
545
+ inputs_embeds = cast(
546
+ torch.Tensor, self.decoder.model.embed_tokens(input_ids)
547
+ )
548
+
549
+ if input_values is not None:
550
+ if self.audio_token_id is None:
551
+ raise ValueError(
552
+ "Audio input is provided, but `audio_token_id` is not configured."
553
+ )
554
+
555
+ audio_embeddings = self._forward_audio_encoder(
556
+ input_values,
557
+ audio_length=audio_length,
558
+ ).to(inputs_embeds.dtype)
559
+
560
+ audio_mask = (input_ids == self.audio_token_id).flatten()
561
+ diff = torch.diff(
562
+ audio_mask.long(),
563
+ prepend=torch.zeros(
564
+ (1,),
565
+ dtype=torch.long,
566
+ device=audio_mask.device,
567
+ ),
568
+ )
569
+ audio_span_starts = (diff == 1).nonzero()
570
+ audio_span_ends = (diff == -1).nonzero()
571
+
572
+ embeds_view = inputs_embeds.view(-1, inputs_embeds.shape[-1])
573
+ for span_start, span_end, audio in zip(
574
+ audio_span_starts,
575
+ audio_span_ends,
576
+ audio_embeddings,
577
+ strict=True,
578
+ ):
579
+ embeds_view[span_start:span_end] = audio[: span_end - span_start]
580
+ else:
581
+ if inputs_embeds is None:
582
+ raise ValueError(
583
+ "Either `input_ids` or `inputs_embeds` must be passed."
584
+ )
585
+ if input_values is not None:
586
+ raise ValueError(
587
+ "Cannot pass `input_values` when `inputs_embeds` is provided."
588
+ )
589
+
590
+ return inputs_embeds
591
+
592
+ def forward(
593
+ self,
594
+ input_ids: Optional[Tensor] = None,
595
+ input_values: Optional[Tensor] = None,
596
+ inputs_embeds: Optional[Tensor] = None,
597
+ audio_length: Optional[Iterable[int]] = None,
598
+ attention_mask: Optional[Tensor] = None,
599
+ position_ids: Optional[torch.Tensor] = None,
600
+ labels: Optional[torch.Tensor] = None,
601
+ **kwargs: Any,
602
+ ):
603
+ inputs_embeds = self._prepare_inputs_embeds(
604
+ input_ids=input_ids,
605
+ input_values=input_values,
606
+ inputs_embeds=inputs_embeds,
607
+ audio_length=audio_length,
608
+ )
609
+ return self.decoder(
610
+ input_ids=None,
611
+ inputs_embeds=inputs_embeds,
612
+ attention_mask=attention_mask,
613
+ position_ids=position_ids,
614
+ labels=labels,
615
+ **kwargs,
616
+ )
617
+
618
+ def generate(
619
+ self,
620
+ input_ids: Optional[Tensor] = None,
621
+ input_values: Optional[Tensor] = None,
622
+ inputs_embeds: Optional[Tensor] = None,
623
+ audio_length: Optional[Iterable[int]] = None,
624
+ **kwargs,
625
+ ):
626
+ inputs_embeds = self._prepare_inputs_embeds(
627
+ input_ids=input_ids,
628
+ input_values=input_values,
629
+ inputs_embeds=inputs_embeds,
630
+ audio_length=audio_length,
631
+ )
632
+ return self.decoder.generate(
633
+ inputs_embeds=inputs_embeds,
634
+ generation_config=kwargs.pop("generation_config", self.generation_config),
635
+ **kwargs,
636
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
4
+ },
5
+ "do_normalize": false,
6
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
7
+ "feature_size": 1,
8
+ "padding_side": "right",
9
+ "padding_value": 0.0,
10
+ "processor_class": "MiDashengLMProcessor",
11
+ "return_attention_mask": false,
12
+ "sampling_rate": 16000
13
+ }
processing_midashenglm.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Optional, Union, cast
2
+
3
+ import numpy as np
4
+ import torch
5
+ from transformers import Qwen2Tokenizer, Qwen2TokenizerFast, Wav2Vec2FeatureExtractor
6
+ from transformers.feature_extraction_utils import BatchFeature
7
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin
8
+ from typing_extensions import Unpack
9
+
10
+
11
+ class MiDashengLMProcessorKwargs(ProcessingKwargs):
12
+ _defaults = { # type: ignore
13
+ "text_kwargs": {
14
+ "padding": True,
15
+ "padding_side": "left",
16
+ },
17
+ "audio_kwargs": {},
18
+ }
19
+
20
+
21
+ def calculate_mel_frames_dasheng(
22
+ audio_length_samples: int,
23
+ n_fft: int = 512,
24
+ hop_size: int = 160,
25
+ dasheng_subsampling: int = 4,
26
+ center=True,
27
+ model_subsampling: int = 5,
28
+ ) -> int:
29
+ """Calculate the number of Mel-spectrogram frames."""
30
+ if center:
31
+ audio_length_samples = audio_length_samples + n_fft
32
+
33
+ return (
34
+ int(1 + ((audio_length_samples - n_fft) / hop_size))
35
+ // dasheng_subsampling
36
+ // model_subsampling
37
+ )
38
+
39
+
40
+ class MiDashengLMProcessor(ProcessorMixin):
41
+ attributes = ["feature_extractor", "tokenizer"]
42
+ valid_kwargs = [
43
+ "chat_template",
44
+ "audio_token",
45
+ "audio_bos_token",
46
+ "audio_eos_token",
47
+ ]
48
+ feature_extractor_class = "Wav2Vec2FeatureExtractor"
49
+ tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
50
+
51
+ def __init__(
52
+ self,
53
+ feature_extractor: Wav2Vec2FeatureExtractor,
54
+ tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast],
55
+ model_subsampling: int = 5,
56
+ chat_template: Optional[Union[str, Dict[str, str]]] = None,
57
+ audio_token: Optional[str] = None,
58
+ audio_bos_token: Optional[str] = None,
59
+ audio_eos_token: Optional[str] = None,
60
+ ):
61
+ assert audio_token is not None or hasattr(tokenizer, "audio_token"), (
62
+ "Either `audio_token` must be provided or tokenizer must have `audio_token` attribute."
63
+ )
64
+ assert audio_bos_token is not None or hasattr(tokenizer, "audio_bos_token"), (
65
+ "Either `audio_bos_token` must be provided or tokenizer must have `audio_bos_token` attribute."
66
+ )
67
+ assert audio_eos_token is not None or hasattr(tokenizer, "audio_eos_token"), (
68
+ "Either `audio_eos_token` must be provided or tokenizer must have `audio_eos_token` attribute."
69
+ )
70
+ assert not feature_extractor.do_normalize, (
71
+ "This model does not use normalization. Please set `do_normalize=False` in the feature extractor."
72
+ )
73
+
74
+ if chat_template is None:
75
+ chat_template = tokenizer.chat_template
76
+
77
+ def get_token(token_name: str) -> str:
78
+ if not hasattr(tokenizer, token_name):
79
+ raise ValueError(
80
+ f"Tokenizer does not have attribute `{token_name}`. "
81
+ "Please provide it as an argument to the processor."
82
+ )
83
+ token = getattr(tokenizer, token_name)
84
+ if not isinstance(token, str):
85
+ raise TypeError(
86
+ f"Expected token {token_name} to be a string, but got {type(token)}."
87
+ )
88
+ return token
89
+
90
+ self.audio_token = audio_token or get_token("audio_token")
91
+ self.audio_bos_token = audio_bos_token or get_token("audio_bos_token")
92
+ self.audio_eos_token = audio_eos_token or get_token("audio_eos_token")
93
+
94
+ self.audio_token_id = cast(
95
+ int, tokenizer.convert_tokens_to_ids(self.audio_token)
96
+ )
97
+ self.model_subsampling = model_subsampling
98
+ self.sampling_rate = feature_extractor.sampling_rate
99
+
100
+ super().__init__(feature_extractor, tokenizer, chat_template=chat_template)
101
+ self.feature_extractor: Wav2Vec2FeatureExtractor
102
+ self.tokenizer: Union[Qwen2Tokenizer, Qwen2TokenizerFast]
103
+ self.chat_template: Optional[Union[str, Dict[str, str]]]
104
+
105
+ def _process_messages_for_chat_template(
106
+ self,
107
+ conversation,
108
+ batch_images,
109
+ batch_videos,
110
+ batch_video_metadata,
111
+ **mm_load_kwargs,
112
+ ):
113
+ if (sr := mm_load_kwargs.get("sampling_rate", None)) is not None:
114
+ if sr != self.sampling_rate:
115
+ raise ValueError(
116
+ f"This model is trained with a sampling rate of {self.sampling_rate}, "
117
+ f"but the sampling rate {sr} is used to load audio."
118
+ )
119
+ return super()._process_messages_for_chat_template(
120
+ conversation,
121
+ batch_images,
122
+ batch_videos,
123
+ batch_video_metadata,
124
+ **mm_load_kwargs,
125
+ )
126
+
127
+ @classmethod
128
+ def _validate_audio_sample(
129
+ cls,
130
+ sample: Union[np.ndarray, torch.Tensor],
131
+ ) -> np.ndarray:
132
+ if isinstance(sample, torch.Tensor):
133
+ if sample.ndim != 1:
134
+ raise ValueError("Audio tensor must be 1D.")
135
+ return sample.numpy()
136
+ if isinstance(sample, np.ndarray):
137
+ if sample.ndim != 1:
138
+ raise ValueError("Audio array must be 1D.")
139
+ return sample
140
+ if isinstance(sample, str):
141
+ # When passing audio paths through `apply_chat_template`, transformers
142
+ # will attempt to load the audio file, but only succeeds if the path
143
+ # is a valid URL (starting with http:// or https://) or an existing local
144
+ # file. Otherwise, the string is passed as-is. This captures that case and
145
+ # raises an error to inform the user.
146
+ raise TypeError(
147
+ "Expected audio to be a numpy array or torch tensor, but got a string. "
148
+ "If you passed audios through `apply_chat_template`, "
149
+ "make sure the audio paths are valid URLs starting with http:// or https://, "
150
+ "or existing local files."
151
+ )
152
+ raise TypeError(
153
+ f"Expected audio to be a numpy array, torch tensor, or string, but got {type(sample)}."
154
+ )
155
+
156
+ def __call__(
157
+ self,
158
+ text: Optional[List[str]] = None,
159
+ audio: Optional[Union[List[np.ndarray], List[torch.Tensor]]] = None,
160
+ **kwargs: Unpack[MiDashengLMProcessorKwargs],
161
+ ) -> BatchFeature:
162
+ if text is None:
163
+ raise ValueError("You need to specify `text` input to process.")
164
+ elif isinstance(text, str):
165
+ text = [text]
166
+ elif not isinstance(text, list) and not isinstance(text[0], str):
167
+ raise ValueError(
168
+ "Invalid input text. Please provide a string, or a list of strings"
169
+ )
170
+
171
+ if (
172
+ kwargs.get("images", None) is not None
173
+ or kwargs.get("videos", None) is not None
174
+ ):
175
+ raise ValueError("This model does not support images or videos.")
176
+
177
+ output_kwargs = self._merge_kwargs(
178
+ MiDashengLMProcessorKwargs, # type: ignore # Bad type hint in transformers
179
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
180
+ **kwargs,
181
+ )
182
+
183
+ if audio is not None:
184
+ audio = [self._validate_audio_sample(sample) for sample in audio]
185
+ # ensure we have as much audios as audio tokens
186
+ num_audio_tokens = sum(sample.count(self.audio_token) for sample in text)
187
+ num_audios = 1 if type(audio) is np.ndarray else len(audio)
188
+ if num_audio_tokens != num_audios:
189
+ raise ValueError(
190
+ f"Found {num_audio_tokens} {self.audio_token} token{'s' if num_audio_tokens > 1 else ''} in provided text but received {num_audios} audio{'s' if num_audios > 1 else ''}"
191
+ )
192
+
193
+ # Some kwargs should not be changed so we can expand text with audio tokens below
194
+ output_kwargs["audio_kwargs"]["return_attention_mask"] = True
195
+ output_kwargs["audio_kwargs"]["padding"] = True
196
+ output_kwargs["audio_kwargs"]["return_tensors"] = "pt"
197
+
198
+ # + Padding
199
+ audio_inputs = self.feature_extractor(
200
+ audio,
201
+ sampling_rate=self.sampling_rate,
202
+ **output_kwargs["audio_kwargs"],
203
+ )
204
+
205
+ # remove attention mask, dasheng uses lengths
206
+ audio_feature_mask = audio_inputs.pop("attention_mask")
207
+
208
+ expanded_text = []
209
+ audio_lengths = audio_feature_mask.sum(-1).tolist()
210
+ audio_inputs["audio_length"] = torch.tensor(audio_lengths).long()
211
+
212
+ for sample in text:
213
+ replace_str = []
214
+ while self.audio_token in sample:
215
+ audio_length = audio_lengths.pop(0)
216
+ num_audio_tokens = calculate_mel_frames_dasheng(
217
+ audio_length, model_subsampling=self.model_subsampling
218
+ )
219
+
220
+ expanded_audio_token = self.audio_token * num_audio_tokens
221
+
222
+ audio_token_start_idx = sample.find(self.audio_token)
223
+ audio_token_end_idx = audio_token_start_idx + len(self.audio_token)
224
+
225
+ has_bos = (
226
+ sample[
227
+ audio_token_start_idx
228
+ - len(self.audio_bos_token) : audio_token_start_idx
229
+ ]
230
+ == self.audio_bos_token
231
+ )
232
+ has_eos = (
233
+ sample[
234
+ audio_token_end_idx : audio_token_end_idx
235
+ + len(self.audio_eos_token)
236
+ ]
237
+ == self.audio_eos_token
238
+ )
239
+
240
+ # Check if this audio token is surrounded by bos/eos tokens
241
+ if not has_bos and not has_eos:
242
+ expanded_audio_token = (
243
+ self.audio_bos_token
244
+ + expanded_audio_token
245
+ + self.audio_eos_token
246
+ )
247
+
248
+ replace_str.append(expanded_audio_token)
249
+ sample = sample.replace(self.audio_token, "<placeholder>", 1)
250
+
251
+ while "<placeholder>" in sample:
252
+ sample = sample.replace("<placeholder>", replace_str.pop(0), 1)
253
+ expanded_text.append(sample)
254
+ text = expanded_text
255
+
256
+ return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", "pt")
257
+ inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
258
+ self._check_special_mm_tokens(
259
+ text,
260
+ BatchFeature(inputs), # type: ignore
261
+ modalities=["audio"],
262
+ )
263
+
264
+ if audio is not None:
265
+ inputs.update(audio_inputs)
266
+
267
+ return BatchFeature(data={**inputs}, tensor_type=return_tensors)
268
+
269
+ @property
270
+ def model_input_names(self):
271
+ tokenizer_input_names = self.tokenizer.model_input_names
272
+ feature_extractor_input_names = self.feature_extractor.model_input_names
273
+ return list(
274
+ dict.fromkeys(
275
+ tokenizer_input_names + feature_extractor_input_names + ["audio_length"]
276
+ )
277
+ )
processor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "audio_bos_token": "<|audio_bos|>",
3
+ "audio_eos_token": "<|audio_eos|>",
4
+ "audio_token": "<|AUDIO|>",
5
+ "auto_map": {
6
+ "AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
7
+ },
8
+ "model_subsampling": 5,
9
+ "processor_class": "MiDashengLMProcessor"
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|en|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|kr|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<|de|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ {
25
+ "content": "<|es|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ {
32
+ "content": "<|fr|>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ {
39
+ "content": "<|hi|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false
44
+ },
45
+ {
46
+ "content": "<|uk|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false
51
+ },
52
+ {
53
+ "content": "<|th|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false
58
+ },
59
+ {
60
+ "content": "<|vi|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false
65
+ },
66
+ {
67
+ "content": "<|nl|>",
68
+ "lstrip": false,
69
+ "normalized": false,
70
+ "rstrip": false,
71
+ "single_word": false
72
+ },
73
+ {
74
+ "content": "<|pt|>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false
79
+ },
80
+ {
81
+ "content": "<|id|>",
82
+ "lstrip": false,
83
+ "normalized": false,
84
+ "rstrip": false,
85
+ "single_word": false
86
+ },
87
+ {
88
+ "content": "<|ru|>",
89
+ "lstrip": false,
90
+ "normalized": false,
91
+ "rstrip": false,
92
+ "single_word": false
93
+ },
94
+ {
95
+ "content": "<|it|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false
100
+ },
101
+ {
102
+ "content": "<|ar|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false
107
+ },
108
+ {
109
+ "content": "<|jp|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false
114
+ },
115
+ {
116
+ "content": "<|unknown|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false
121
+ }
122
+ ],
123
+ "audio_bos_token": "<|audio_bos|>",
124
+ "audio_eos_token": "<|audio_eos|>",
125
+ "audio_token": "<|AUDIO|>",
126
+ "eos_token": {
127
+ "content": "<|im_end|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ },
133
+ "image_token": "<|IMAGE|>",
134
+ "pad_token": {
135
+ "content": "<|endoftext|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false
140
+ },
141
+ "video_token": "<|VIDEO|>",
142
+ "vision_bos_token": "<|vision_bos|>",
143
+ "vision_eos_token": "<|vision_eos|>"
144
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c40343a9d670f4fadbe6415ed2cff441055f663e51d813f2315c3368399914d5
3
+ size 11424986
tokenizer_config.json ADDED
@@ -0,0 +1,365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|AUDIO|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|audio_bos|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|audio_eos|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_bos|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_eos|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|IMAGE|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|VIDEO|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "151665": {
181
+ "content": "<|en|>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "151666": {
189
+ "content": "<|kr|>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "151667": {
197
+ "content": "<|de|>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "151668": {
205
+ "content": "<|es|>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "151669": {
213
+ "content": "<|fr|>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "151670": {
221
+ "content": "<|hi|>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "151671": {
229
+ "content": "<|uk|>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "151672": {
237
+ "content": "<|th|>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "151673": {
245
+ "content": "<|vi|>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "151674": {
253
+ "content": "<|nl|>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "151675": {
261
+ "content": "<|pt|>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "151676": {
269
+ "content": "<|id|>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "151677": {
277
+ "content": "<|ru|>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "151678": {
285
+ "content": "<|it|>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "151679": {
293
+ "content": "<|ar|>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "151680": {
301
+ "content": "<|jp|>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "151681": {
309
+ "content": "<|unknown|>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ }
316
+ },
317
+ "additional_special_tokens": [
318
+ "<|en|>",
319
+ "<|kr|>",
320
+ "<|de|>",
321
+ "<|es|>",
322
+ "<|fr|>",
323
+ "<|hi|>",
324
+ "<|uk|>",
325
+ "<|th|>",
326
+ "<|vi|>",
327
+ "<|nl|>",
328
+ "<|pt|>",
329
+ "<|id|>",
330
+ "<|ru|>",
331
+ "<|it|>",
332
+ "<|ar|>",
333
+ "<|jp|>",
334
+ "<|unknown|>"
335
+ ],
336
+ "audio_bos_token": "<|audio_bos|>",
337
+ "audio_eos_token": "<|audio_eos|>",
338
+ "audio_token": "<|AUDIO|>",
339
+ "auto_map": {
340
+ "AutoProcessor": "processing_midashenglm.MiDashengLMProcessor"
341
+ },
342
+ "bos_token": null,
343
+ "clean_up_tokenization_spaces": false,
344
+ "eos_token": "<|im_end|>",
345
+ "errors": "replace",
346
+ "extra_special_tokens": {
347
+ "audio_bos_token": "<|audio_bos|>",
348
+ "audio_eos_token": "<|audio_eos|>",
349
+ "audio_token": "<|AUDIO|>",
350
+ "image_token": "<|IMAGE|>",
351
+ "video_token": "<|VIDEO|>",
352
+ "vision_bos_token": "<|vision_bos|>",
353
+ "vision_eos_token": "<|vision_eos|>"
354
+ },
355
+ "image_token": "<|IMAGE|>",
356
+ "model_max_length": 32768,
357
+ "pad_token": "<|endoftext|>",
358
+ "processor_class": "MiDashengLMProcessor",
359
+ "split_special_tokens": false,
360
+ "tokenizer_class": "Qwen2Tokenizer",
361
+ "unk_token": null,
362
+ "video_token": "<|VIDEO|>",
363
+ "vision_bos_token": "<|vision_bos|>",
364
+ "vision_eos_token": "<|vision_eos|>"
365
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff