Update README.md
Browse files
README.md
CHANGED
|
@@ -21,3 +21,186 @@ language:
|
|
| 21 |
This mistral3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
This mistral3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
################################################################################
|
| 28 |
+
# We first load the model for QAT using the mobile CPU friendly int8-int4 scheme
|
| 29 |
+
################################################################################
|
| 30 |
+
|
| 31 |
+
from unsloth import FastVisionModel
|
| 32 |
+
from unsloth.chat_templates import (
|
| 33 |
+
get_chat_template,
|
| 34 |
+
)
|
| 35 |
+
import torch
|
| 36 |
+
|
| 37 |
+
MODEL_ID = "unsloth/Ministral-3-3B-Instruct-2512"
|
| 38 |
+
QAT_SCHEME = "int8-int4"
|
| 39 |
+
|
| 40 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
| 41 |
+
model_name = MODEL_ID,
|
| 42 |
+
max_seq_length = 2048,
|
| 43 |
+
dtype = torch.bfloat16,
|
| 44 |
+
load_in_4bit = False,
|
| 45 |
+
full_finetuning = True,
|
| 46 |
+
# ExecuTorch CPU quantization scheme
|
| 47 |
+
# Quantize embedding to 8-bits, and quantize linear layers to 4-bits
|
| 48 |
+
# with 8-bit dynamically quantized activations
|
| 49 |
+
qat_scheme = QAT_SCHEME,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
print(model)
|
| 53 |
+
|
| 54 |
+
################################################################################
|
| 55 |
+
# Data prep
|
| 56 |
+
################################################################################
|
| 57 |
+
|
| 58 |
+
from datasets import load_dataset
|
| 59 |
+
dataset = load_dataset("unsloth/LaTeX_OCR", split = "train")
|
| 60 |
+
|
| 61 |
+
# Convert the dataset into a conversational format
|
| 62 |
+
instruction = "Write the LaTeX representation for this image."
|
| 63 |
+
|
| 64 |
+
def convert_to_conversation(sample):
|
| 65 |
+
conversation = [
|
| 66 |
+
{ "role": "user",
|
| 67 |
+
"content" : [
|
| 68 |
+
{"type" : "text", "text" : instruction},
|
| 69 |
+
{"type" : "image", "image" : sample["image"]} ]
|
| 70 |
+
},
|
| 71 |
+
{ "role" : "assistant",
|
| 72 |
+
"content" : [
|
| 73 |
+
{"type" : "text", "text" : sample["text"]} ]
|
| 74 |
+
},
|
| 75 |
+
]
|
| 76 |
+
return { "messages" : conversation }
|
| 77 |
+
|
| 78 |
+
converted_dataset = [convert_to_conversation(sample) for sample in dataset]
|
| 79 |
+
|
| 80 |
+
print(converted_dataset[0])
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
################################################################################
|
| 84 |
+
# Before finetuning
|
| 85 |
+
################################################################################
|
| 86 |
+
FastVisionModel.for_inference(model) # Enable for inference!
|
| 87 |
+
|
| 88 |
+
image = dataset[2]["image"]
|
| 89 |
+
instruction = "Write the LaTeX representation for this image."
|
| 90 |
+
|
| 91 |
+
messages = [
|
| 92 |
+
{"role": "user", "content": [
|
| 93 |
+
{"type": "image"},
|
| 94 |
+
{"type": "text", "text": instruction}
|
| 95 |
+
]}
|
| 96 |
+
]
|
| 97 |
+
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)
|
| 98 |
+
inputs = tokenizer(
|
| 99 |
+
image,
|
| 100 |
+
input_text,
|
| 101 |
+
add_special_tokens = False,
|
| 102 |
+
return_tensors = "pt",
|
| 103 |
+
).to("cuda")
|
| 104 |
+
|
| 105 |
+
from transformers import TextStreamer
|
| 106 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
| 107 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 64,
|
| 108 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
################################################################################
|
| 112 |
+
# Define trainer
|
| 113 |
+
################################################################################
|
| 114 |
+
|
| 115 |
+
from unsloth.trainer import UnslothVisionDataCollator
|
| 116 |
+
from trl import SFTTrainer, SFTConfig
|
| 117 |
+
from unsloth import is_bf16_supported
|
| 118 |
+
|
| 119 |
+
trainer = SFTTrainer(
|
| 120 |
+
model = model,
|
| 121 |
+
tokenizer = tokenizer,
|
| 122 |
+
data_collator = UnslothVisionDataCollator(model, tokenizer), # Must use!
|
| 123 |
+
train_dataset = converted_dataset,
|
| 124 |
+
args = SFTConfig(
|
| 125 |
+
per_device_train_batch_size = 4,
|
| 126 |
+
gradient_accumulation_steps = 2,
|
| 127 |
+
warmup_steps = 5,
|
| 128 |
+
max_steps = 30,
|
| 129 |
+
# num_train_epochs = 1, # Set this instead of max_steps for full training runs
|
| 130 |
+
learning_rate = 3e-5,
|
| 131 |
+
logging_steps = 1,
|
| 132 |
+
optim = "adamw_8bit",
|
| 133 |
+
fp16 = not is_bf16_supported(), # Use fp16 if bf16 is not supported
|
| 134 |
+
bf16 = is_bf16_supported(), # Use bf16 if supported
|
| 135 |
+
weight_decay = 0.001,
|
| 136 |
+
lr_scheduler_type = "linear",
|
| 137 |
+
seed = 3407,
|
| 138 |
+
output_dir = "outputs",
|
| 139 |
+
report_to = "none",
|
| 140 |
+
|
| 141 |
+
# You MUST put the below items for vision finetuning:
|
| 142 |
+
remove_unused_columns = False,
|
| 143 |
+
dataset_text_field = "",
|
| 144 |
+
dataset_kwargs = {"skip_prepare_dataset": True},
|
| 145 |
+
max_length = 2048,
|
| 146 |
+
),
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
################################################################################
|
| 151 |
+
# Do fine tuning
|
| 152 |
+
################################################################################
|
| 153 |
+
trainer_stats = trainer.train()
|
| 154 |
+
|
| 155 |
+
################################################################################
|
| 156 |
+
# Inference after finetuning
|
| 157 |
+
################################################################################
|
| 158 |
+
FastVisionModel.for_inference(model) # Enable for inference!
|
| 159 |
+
|
| 160 |
+
image = dataset[2]["image"]
|
| 161 |
+
instruction = "Write the LaTeX representation for this image."
|
| 162 |
+
|
| 163 |
+
messages = [
|
| 164 |
+
{"role": "user", "content": [
|
| 165 |
+
{"type": "image"},
|
| 166 |
+
{"type": "text", "text": instruction}
|
| 167 |
+
]}
|
| 168 |
+
]
|
| 169 |
+
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)
|
| 170 |
+
inputs = tokenizer(
|
| 171 |
+
image,
|
| 172 |
+
input_text,
|
| 173 |
+
add_special_tokens = False,
|
| 174 |
+
return_tensors = "pt",
|
| 175 |
+
).to("cuda")
|
| 176 |
+
|
| 177 |
+
from transformers import TextStreamer
|
| 178 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
| 179 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,
|
| 180 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# ################################################################################
|
| 184 |
+
# # Convert model to torchao format and save
|
| 185 |
+
# ################################################################################
|
| 186 |
+
|
| 187 |
+
from unsloth.models._utils import _convert_torchao_model
|
| 188 |
+
_convert_torchao_model(model)
|
| 189 |
+
|
| 190 |
+
model_name = MODEL_ID.split("/")[-1]
|
| 191 |
+
save_to = f"{model_name}-{QAT_SCHEME}-unsloth"
|
| 192 |
+
|
| 193 |
+
# Save locally
|
| 194 |
+
model.save_pretrained(save_to, safe_serialization=False)
|
| 195 |
+
tokenizer.save_pretrained(save_to)
|
| 196 |
+
|
| 197 |
+
# Or save to hub
|
| 198 |
+
from huggingface_hub import get_token, whoami
|
| 199 |
+
def _get_username():
|
| 200 |
+
token = get_token()
|
| 201 |
+
username = whoami(token=token)["name"]
|
| 202 |
+
return username
|
| 203 |
+
username = _get_username()
|
| 204 |
+
model.push_to_hub(f"{username}/{save_to}", safe_serialization=False)
|
| 205 |
+
tokenizer.push_to_hub(f"{username}/{save_to}")
|
| 206 |
+
```
|