Tom Aarsen
commited on
Commit
·
fc60470
1
Parent(s):
976214b
Add Sentence Transformers integration with CLS pooling
Browse files- 1_Pooling/config.json +10 -0
- README.md +30 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -28,6 +28,30 @@ PubMedNCL: Working with biomedical papers? Try [PubMedNCL](https://huggingface.c
|
|
| 28 |
|
| 29 |
## How to use the pretrained model
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
```python
|
| 32 |
from transformers import AutoTokenizer, AutoModel
|
| 33 |
|
|
@@ -49,6 +73,12 @@ result = model(**inputs)
|
|
| 49 |
|
| 50 |
# take the first token ([CLS] token) in the batch as the embedding
|
| 51 |
embeddings = result.last_hidden_state[:, 0, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
## Triplet Mining Parameters
|
|
|
|
| 28 |
|
| 29 |
## How to use the pretrained model
|
| 30 |
|
| 31 |
+
### Sentence Transformers
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
from sentence_transformers import SentenceTransformer
|
| 35 |
+
|
| 36 |
+
# Load the model
|
| 37 |
+
model = SentenceTransformer("malteos/scincl")
|
| 38 |
+
|
| 39 |
+
# Concatenate the title and abstract with the [SEP] token
|
| 40 |
+
papers = [
|
| 41 |
+
"BERT [SEP] We introduce a new language representation model called BERT",
|
| 42 |
+
"Attention is all you need [SEP] The dominant sequence transduction models are based on complex recurrent or convolutional neural networks",
|
| 43 |
+
]
|
| 44 |
+
# Inference
|
| 45 |
+
embeddings = model.encode(papers)
|
| 46 |
+
|
| 47 |
+
# Compute the (cosine) similarity between embeddings
|
| 48 |
+
similarity = model.similarity(embeddings[0], embeddings[1])
|
| 49 |
+
print(similarity.item())
|
| 50 |
+
# => 0.8440517783164978
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### Transformers
|
| 54 |
+
|
| 55 |
```python
|
| 56 |
from transformers import AutoTokenizer, AutoModel
|
| 57 |
|
|
|
|
| 73 |
|
| 74 |
# take the first token ([CLS] token) in the batch as the embedding
|
| 75 |
embeddings = result.last_hidden_state[:, 0, :]
|
| 76 |
+
|
| 77 |
+
# calculate the similarity
|
| 78 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 79 |
+
similarity = (embeddings[0] @ embeddings[1].T)
|
| 80 |
+
print(similarity.item())
|
| 81 |
+
# => 0.8440518379211426
|
| 82 |
```
|
| 83 |
|
| 84 |
## Triplet Mining Parameters
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.0.0",
|
| 4 |
+
"transformers": "4.41.2",
|
| 5 |
+
"pytorch": "2.3.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|