lbourdois commited on
Commit
c3d5998
·
verified ·
1 Parent(s): eda29b8

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +113 -101
README.md CHANGED
@@ -1,102 +1,114 @@
1
- ---
2
- library_name: transformers
3
- datasets:
4
- - openGPT-X/gsm8kx
5
- language:
6
- - de
7
- base_model:
8
- - Qwen/Qwen2.5-3B-Instruct
9
- pipeline_tag: text-generation
10
- ---
11
-
12
- # German R1
13
-
14
- ![A German whale](https://huggingface.co/malteos/german-r1/resolve/main/german-whale.png)
15
-
16
- **Introducing German-R1. We are so back!!11**
17
-
18
- - 🇩🇪 German R1 is a reasoning model almost equivalent to OpenAI‘s o3 or DeepSeek‘s R1 - but it thinks in German!
19
-
20
- - 🇩🇪 German R1 is so efficient that is was build without any government funding.
21
-
22
- - 🇩🇪 German R1 was only trained with legally imported H100s in less than five minutes.
23
-
24
- - Please do NOT take this too serious.
25
-
26
- ## Context
27
-
28
- ![some contex](https://huggingface.co/malteos/german-r1/resolve/main/context.png)
29
-
30
- See Linkedin: https://www.linkedin.com/posts/activity-7294337496023269376-ZBkI
31
-
32
- ## Usage
33
-
34
- You can run the model as follows:
35
-
36
- ```python
37
- from transformers import pipeline, set_seed
38
- import json
39
-
40
- set_seed(42)
41
- pipe = pipeline("text-generation", "malteos/german-r1")
42
-
43
- # from gsm8k test set
44
- question = "James beschließt, 3-mal pro Woche 3 Sprints zu laufen. Er läuft 60 Meter pro Sprint. Wie viele Meter läuft er insgesamt pro Woche?"
45
- expected_answer = "540"
46
-
47
- # xml reasoning and answer format
48
- system_prompt = """
49
- Antworte auf deutsch und in diesem Format:
50
- <reasoning>
51
- ...
52
- </reasoning>
53
- <answer>
54
- ...
55
- </answer>
56
- """
57
-
58
- messages = [
59
- {
60
- "role": "system",
61
- "content": system_prompt,
62
- },
63
- {"role": "user", "content": dataset["question"][3]},
64
- ]
65
- response = pipe(messages, max_new_tokens=256)
66
-
67
- print(json.dumps(response, indent=4, ensure_ascii=False))
68
- ```
69
-
70
- The output should look like this (correct answer: 540)
71
-
72
- ```json
73
- [
74
- {
75
- "generated_text": [
76
- {
77
- "role": "system",
78
- "content": "\nAntworte auf deutsch und in diesem Format:\n<reasoning>\n...\n</reasoning>\n<answer>\n...\n</answer>\n"
79
- },
80
- {
81
- "role": "user",
82
- "content": "James beschließt, 3-mal pro Woche 3 Sprints zu laufen. Er läuft 60 Meter pro Sprint. Wie viele Meter läuft er insgesamt pro Woche?"
83
- },
84
- {
85
- "role": "assistant",
86
- "content": "<reasoning>\nJames läuft 3 Sprints pro Tag, wobei jeder Sprint 60 Meter beträgt. Deshalb läuft er pro Tag 3 Sprints * 60 Meter/Sprint = 180 Meter. James läuft 3 Mal pro Woche, also läuft er insgesamt 180 Meter * 3 = 540 Meter pro Woche.\n</reasoning>\n<answer>\n540\n</answer>\n"
87
- }
88
- ]
89
- }
90
- ]
91
- ```
92
-
93
- ## Training details
94
-
95
- - Base model: Qwen2.5-3B-Instruct
96
- - Implementation: based on [GRPO demo](https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb) by [will brown](https://x.com/willccbb) + language identification reward
97
- - Training data: German subset of [openGPT-X/gsm8kx](https://huggingface.co/datasets/openGPT-X/gsm8kx/) (machine translated from the English gsm8k)
98
-
99
-
100
- ## License
101
-
 
 
 
 
 
 
 
 
 
 
 
 
102
  [Qwen research](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE)
 
1
+ ---
2
+ library_name: transformers
3
+ datasets:
4
+ - openGPT-X/gsm8kx
5
+ language:
6
+ - zho
7
+ - eng
8
+ - fra
9
+ - spa
10
+ - por
11
+ - deu
12
+ - ita
13
+ - rus
14
+ - jpn
15
+ - kor
16
+ - vie
17
+ - tha
18
+ - ara
19
+ base_model:
20
+ - Qwen/Qwen2.5-3B-Instruct
21
+ pipeline_tag: text-generation
22
+ ---
23
+
24
+ # German R1
25
+
26
+ ![A German whale](https://huggingface.co/malteos/german-r1/resolve/main/german-whale.png)
27
+
28
+ **Introducing German-R1. We are so back!!11**
29
+
30
+ - 🇩🇪 German R1 is a reasoning model almost equivalent to OpenAI‘s o3 or DeepSeek‘s R1 - but it thinks in German!
31
+
32
+ - 🇩🇪 German R1 is so efficient that is was build without any government funding.
33
+
34
+ - 🇩🇪 German R1 was only trained with legally imported H100s in less than five minutes.
35
+
36
+ - Please do NOT take this too serious.
37
+
38
+ ## Context
39
+
40
+ ![some contex](https://huggingface.co/malteos/german-r1/resolve/main/context.png)
41
+
42
+ See Linkedin: https://www.linkedin.com/posts/activity-7294337496023269376-ZBkI
43
+
44
+ ## Usage
45
+
46
+ You can run the model as follows:
47
+
48
+ ```python
49
+ from transformers import pipeline, set_seed
50
+ import json
51
+
52
+ set_seed(42)
53
+ pipe = pipeline("text-generation", "malteos/german-r1")
54
+
55
+ # from gsm8k test set
56
+ question = "James beschließt, 3-mal pro Woche 3 Sprints zu laufen. Er läuft 60 Meter pro Sprint. Wie viele Meter läuft er insgesamt pro Woche?"
57
+ expected_answer = "540"
58
+
59
+ # xml reasoning and answer format
60
+ system_prompt = """
61
+ Antworte auf deutsch und in diesem Format:
62
+ <reasoning>
63
+ ...
64
+ </reasoning>
65
+ <answer>
66
+ ...
67
+ </answer>
68
+ """
69
+
70
+ messages = [
71
+ {
72
+ "role": "system",
73
+ "content": system_prompt,
74
+ },
75
+ {"role": "user", "content": dataset["question"][3]},
76
+ ]
77
+ response = pipe(messages, max_new_tokens=256)
78
+
79
+ print(json.dumps(response, indent=4, ensure_ascii=False))
80
+ ```
81
+
82
+ The output should look like this (correct answer: 540)
83
+
84
+ ```json
85
+ [
86
+ {
87
+ "generated_text": [
88
+ {
89
+ "role": "system",
90
+ "content": "\nAntworte auf deutsch und in diesem Format:\n<reasoning>\n...\n</reasoning>\n<answer>\n...\n</answer>\n"
91
+ },
92
+ {
93
+ "role": "user",
94
+ "content": "James beschließt, 3-mal pro Woche 3 Sprints zu laufen. Er läuft 60 Meter pro Sprint. Wie viele Meter läuft er insgesamt pro Woche?"
95
+ },
96
+ {
97
+ "role": "assistant",
98
+ "content": "<reasoning>\nJames läuft 3 Sprints pro Tag, wobei jeder Sprint 60 Meter beträgt. Deshalb läuft er pro Tag 3 Sprints * 60 Meter/Sprint = 180 Meter. James läuft 3 Mal pro Woche, also läuft er insgesamt 180 Meter * 3 = 540 Meter pro Woche.\n</reasoning>\n<answer>\n540\n</answer>\n"
99
+ }
100
+ ]
101
+ }
102
+ ]
103
+ ```
104
+
105
+ ## Training details
106
+
107
+ - Base model: Qwen2.5-3B-Instruct
108
+ - Implementation: based on [GRPO demo](https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb) by [will brown](https://x.com/willccbb) + language identification reward
109
+ - Training data: German subset of [openGPT-X/gsm8kx](https://huggingface.co/datasets/openGPT-X/gsm8kx/) (machine translated from the English gsm8k)
110
+
111
+
112
+ ## License
113
+
114
  [Qwen research](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE)