--- library_name: transformers license: other base_model: facebook/opt-125m tags: - generated_from_trainer model-index: - name: opt-125m-cluster results: [] --- # opt-125m-cluster This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 3.1172 | 0.0356 | 1000 | nan | | 3.2603 | 0.0711 | 2000 | nan | | 3.222 | 0.1067 | 3000 | nan | | 3.1457 | 0.1422 | 4000 | nan | | 3.0929 | 0.1778 | 5000 | nan | | 3.1864 | 0.2133 | 6000 | nan | | 3.1887 | 0.2489 | 7000 | nan | | 3.162 | 0.2844 | 8000 | nan | | 3.1355 | 0.32 | 9000 | nan | | 3.1201 | 0.3556 | 10000 | nan | | 3.0831 | 0.3911 | 11000 | nan | | 3.0724 | 0.4267 | 12000 | nan | | 3.0465 | 0.4622 | 13000 | nan | | 3.0446 | 0.4978 | 14000 | nan | | 3.0422 | 0.5333 | 15000 | nan | | 3.0986 | 0.5689 | 16000 | nan | | 3.1074 | 0.6044 | 17000 | nan | | 3.1088 | 0.64 | 18000 | nan | | 3.0854 | 0.6756 | 19000 | nan | | 3.0752 | 0.7111 | 20000 | nan | | 3.065 | 0.7467 | 21000 | nan | | 3.0527 | 0.7822 | 22000 | nan | | 3.0428 | 0.8178 | 23000 | nan | | 3.0357 | 0.8533 | 24000 | nan | | 3.0295 | 0.8889 | 25000 | nan | | 3.0149 | 0.9244 | 26000 | nan | | 3.0146 | 0.96 | 27000 | nan | | 3.0148 | 0.9956 | 28000 | nan | | 2.9621 | 1.0311 | 29000 | nan | | 2.9542 | 1.0667 | 30000 | nan | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.1