File size: 9,193 Bytes
40848df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import math
import os
from dataclasses import dataclass
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from .configuration_nanogpt import NanoGPTConfig
def _rms_norm(x: torch.Tensor) -> torch.Tensor:
return F.rms_norm(x, (x.size(-1),))
def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
assert x.ndim == 4
d = x.shape[3] // 2
x1, x2 = x[..., :d], x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
out = torch.cat([y1, y2], 3)
return out.to(x.dtype)
def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
if n_rep == 1:
return x
bs, n_kv_heads, slen, head_dim = x.shape
return (
x[:, :, None, :, :]
.expand(bs, n_kv_heads, n_rep, slen, head_dim)
.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
)
class CausalSelfAttention(nn.Module):
def __init__(self, config: NanoGPTConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
B, T, C = x.size()
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
cos, sin = cos_sin
q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin)
q, k = _rms_norm(q), _rms_norm(k)
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
Tq = q.size(2)
Tk = k.size(2)
nrep = self.n_head // self.n_kv_head
k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep)
if Tq == Tk:
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
elif Tq == 1:
y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
else:
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device)
prefix_len = Tk - Tq
if prefix_len > 0:
attn_mask[:, :prefix_len] = True
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
y = y.transpose(1, 2).contiguous().view(B, T, -1)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config: NanoGPTConfig):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.c_fc(x)
x = F.relu(x).square()
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config: NanoGPTConfig, layer_idx: int):
super().__init__()
self.attn = CausalSelfAttention(config, layer_idx)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
x = x + self.attn(_rms_norm(x), cos_sin, kv_cache)
x = x + self.mlp(_rms_norm(x))
return x
class NanoGPTModel(PreTrainedModel):
config_class = NanoGPTConfig
def __init__(self, config: NanoGPTConfig):
super().__init__(config)
self.transformer = nn.ModuleDict({
"wte": nn.Embedding(config.vocab_size, config.n_embd),
"h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
})
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.rotary_seq_len = config.sequence_len * 10
head_dim = config.n_embd // config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
# ensure fp32 activations
self.transformer.wte.to(dtype=torch.bfloat16)
# following HF API expectations
self.post_init()
def _init_weights(self, module: nn.Module):
if isinstance(module, nn.Linear):
fan_out = module.weight.size(0)
fan_in = module.weight.size(1)
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None):
if device is None:
device = self.transformer.wte.weight.device
# Handle meta device case - use CPU as fallback
if device.type == 'meta':
device = torch.device('cpu')
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
inv_freq = 1.0 / (base ** (channel_range / head_dim))
t = torch.arange(seq_len, dtype=torch.float32, device=device)
freqs = torch.outer(t, inv_freq)
cos, sin = freqs.cos(), freqs.sin()
cos, sin = cos.bfloat16(), sin.bfloat16()
cos, sin = cos[None, :, None, :], sin[None, :, None, :]
return cos, sin
def forward(self, input_ids: torch.Tensor, labels=None, **kwargs):
idx = input_ids
B, T = idx.size()
T0 = 0
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]
x = self.transformer.wte(idx)
x = x.float()
x = _rms_norm(x)
for block in self.transformer.h:
x = block(x, cos_sin, None)
x = _rms_norm(x)
softcap = 15
logits = self.lm_head(x)
logits = softcap * torch.tanh(logits / softcap)
loss = None
if labels is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction='mean')
return {"loss": loss, "logits": logits}
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
subfolder = kwargs.pop("subfolder", None)
device_map = kwargs.get("device_map")
if device_map is not None:
# Delegate complex dispatch (like accelerate) to the base implementation.
if subfolder is not None:
kwargs["subfolder"] = subfolder
if config is not None:
kwargs["config"] = config
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
base_path = Path(pretrained_model_name_or_path)
if subfolder:
base_path = base_path / subfolder
weight_path = None
if base_path.is_dir():
candidate_files = [
base_path / "pytorch_model.bin",
base_path / "model.bin",
]
candidate_files.extend(sorted(base_path.glob("model_*.pt"), reverse=True))
candidate_files.extend(sorted(base_path.glob("*.bin"), reverse=True))
for cand in candidate_files:
if cand.is_file():
weight_path = cand
break
if weight_path is None:
# Fall back to the default behaviour (e.g. remote repo or standard filenames)
if subfolder is not None:
kwargs["subfolder"] = subfolder
if config is not None:
kwargs["config"] = config
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
if config is None:
config = NanoGPTConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder)
torch_dtype = kwargs.pop("torch_dtype", None)
strict = kwargs.pop("strict", True)
state_dict = torch.load(str(weight_path), map_location="cpu")
if isinstance(state_dict, dict) and "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
state_dict = {k.lstrip("_orig_mod."): v for k, v in state_dict.items()}
model = cls(config, *model_args)
model.load_state_dict(state_dict, strict=strict)
if torch_dtype is not None:
model = model.to(dtype=torch_dtype)
model.eval()
return model
|