Upload 2 files
Browse files
generation_test_hf_script.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def load_rag_benchmark_tester_ds():
|
| 8 |
+
|
| 9 |
+
# pull 200 question rag benchmark test dataset from LLMWare HuggingFace repo
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
|
| 12 |
+
ds_name = "llmware/rag_instruct_benchmark_tester"
|
| 13 |
+
|
| 14 |
+
dataset = load_dataset(ds_name)
|
| 15 |
+
|
| 16 |
+
print("update: loading RAG Benchmark test dataset - ", dataset)
|
| 17 |
+
|
| 18 |
+
test_set = []
|
| 19 |
+
for i, samples in enumerate(dataset["train"]):
|
| 20 |
+
test_set.append(samples)
|
| 21 |
+
|
| 22 |
+
# to view test set samples
|
| 23 |
+
# print("rag benchmark dataset test samples: ", i, samples)
|
| 24 |
+
|
| 25 |
+
return test_set
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def run_test(model_name, test_ds):
|
| 29 |
+
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
print("\nRAG Performance Test - 200 questions")
|
| 33 |
+
print("update: model - ", model_name)
|
| 34 |
+
print("update: device - ", device)
|
| 35 |
+
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 37 |
+
model.to(device)
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 40 |
+
|
| 41 |
+
for i, entries in enumerate(test_ds):
|
| 42 |
+
|
| 43 |
+
# prepare prompt packaging used in fine-tuning process
|
| 44 |
+
new_prompt = "<human>: " + entries["context"] + "\n" + entries["query"] + "\n" + "<bot>:"
|
| 45 |
+
|
| 46 |
+
inputs = tokenizer(new_prompt, return_tensors="pt")
|
| 47 |
+
start_of_output = len(inputs.input_ids[0])
|
| 48 |
+
|
| 49 |
+
# temperature: set at 0.0 for consistency of output with do_sample=False
|
| 50 |
+
# max_new_tokens: set at 100 - may prematurely stop a few of the summaries
|
| 51 |
+
|
| 52 |
+
outputs = model.generate(
|
| 53 |
+
inputs.input_ids.to(device),
|
| 54 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 55 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 56 |
+
do_sample=False,
|
| 57 |
+
temperature=0.0,
|
| 58 |
+
max_new_tokens=100,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
output_only = tokenizer.decode(outputs[0][start_of_output:],skip_special_tokens=True)
|
| 62 |
+
|
| 63 |
+
# quick/optional post-processing clean-up of potential fine-tuning artifacts
|
| 64 |
+
|
| 65 |
+
eot = output_only.find("<|endoftext|>")
|
| 66 |
+
if eot > -1:
|
| 67 |
+
output_only = output_only[:eot]
|
| 68 |
+
|
| 69 |
+
bot = output_only.find("<bot>:")
|
| 70 |
+
if bot > -1:
|
| 71 |
+
output_only = output_only[bot+len("<bot>:"):]
|
| 72 |
+
|
| 73 |
+
# end - post-processing
|
| 74 |
+
|
| 75 |
+
print("\n")
|
| 76 |
+
print(i, "llm_response - ", output_only)
|
| 77 |
+
print(i, "gold_answer - ", entries["answer"])
|
| 78 |
+
|
| 79 |
+
return 0
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
|
| 84 |
+
test_ds = load_rag_benchmark_tester_ds()
|
| 85 |
+
|
| 86 |
+
model_name = "llmware/bling-phi-3"
|
| 87 |
+
output = run_test(model_name,test_ds)
|
| 88 |
+
|
| 89 |
+
|
generation_test_llmware_script.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from llmware.prompts import Prompt
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def load_rag_benchmark_tester_ds():
|
| 6 |
+
|
| 7 |
+
# pull 200 question rag benchmark test dataset from LLMWare HuggingFace repo
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
|
| 10 |
+
ds_name = "llmware/rag_instruct_benchmark_tester"
|
| 11 |
+
|
| 12 |
+
dataset = load_dataset(ds_name)
|
| 13 |
+
|
| 14 |
+
print("update: loading test dataset - ", dataset)
|
| 15 |
+
|
| 16 |
+
test_set = []
|
| 17 |
+
for i, samples in enumerate(dataset["train"]):
|
| 18 |
+
test_set.append(samples)
|
| 19 |
+
|
| 20 |
+
# to view test set samples
|
| 21 |
+
# print("rag benchmark dataset test samples: ", i, samples)
|
| 22 |
+
|
| 23 |
+
return test_set
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def run_test(model_name, prompt_list):
|
| 27 |
+
|
| 28 |
+
print("\nupdate: Starting RAG Benchmark Inference Test")
|
| 29 |
+
|
| 30 |
+
prompter = Prompt().load_model(model_name, temperature=0.0, sample=False)
|
| 31 |
+
|
| 32 |
+
for i, entries in enumerate(prompt_list):
|
| 33 |
+
|
| 34 |
+
prompt = entries["query"]
|
| 35 |
+
context = entries["context"]
|
| 36 |
+
|
| 37 |
+
response = prompter.prompt_main(prompt,context=context,prompt_name="default_with_context")
|
| 38 |
+
|
| 39 |
+
fc = prompter.evidence_check_numbers(response)
|
| 40 |
+
sc = prompter.evidence_comparison_stats(response)
|
| 41 |
+
sr = prompter.evidence_check_sources(response)
|
| 42 |
+
|
| 43 |
+
print("\nupdate: model inference output - ", i, response["llm_response"])
|
| 44 |
+
print("update: gold_answer - ", i, entries["answer"])
|
| 45 |
+
|
| 46 |
+
for entries in fc:
|
| 47 |
+
print("update: fact check - ", entries["fact_check"])
|
| 48 |
+
|
| 49 |
+
for entries in sc:
|
| 50 |
+
print("update: comparison stats - ", entries["comparison_stats"])
|
| 51 |
+
|
| 52 |
+
for entries in sr:
|
| 53 |
+
print("update: sources - ", entries["source_review"])
|
| 54 |
+
|
| 55 |
+
return 0
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
|
| 60 |
+
core_test_set = load_rag_benchmark_tester_ds()
|
| 61 |
+
|
| 62 |
+
model_name = "llmware/bling-phi-3"
|
| 63 |
+
|
| 64 |
+
output = run_test(model_name, core_test_set)
|