Upload
Browse files- __pycache__/explainer.cpython-312.pyc +0 -0
- config.json +11 -0
- explainer.py +122 -0
- pytorch_model.bin +3 -0
__pycache__/explainer.cpython-312.pyc
ADDED
|
Binary file (7.36 kB). View file
|
|
|
config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoConfig": "explainer.ExplainerConfig",
|
| 4 |
+
"AutoModel": "explainer.Explainer"
|
| 5 |
+
},
|
| 6 |
+
"base_model_name": "google/siglip2-giant-opt-patch16-384",
|
| 7 |
+
"giant": true,
|
| 8 |
+
"hidden_dim": 768,
|
| 9 |
+
"model_type": "explainer",
|
| 10 |
+
"torch_dtype": "float32"
|
| 11 |
+
}
|
explainer.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig, PreTrainedModel, AutoProcessor, SiglipModel
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
class ExplainerConfig(PretrainedConfig):
|
| 7 |
+
model_type = "explainer"
|
| 8 |
+
|
| 9 |
+
def __init__(self, base_model_name='google/siglip2-giant-opt-patch16-384',
|
| 10 |
+
hidden_dim=768, giant=True, **kwargs):
|
| 11 |
+
self.base_model_name = base_model_name
|
| 12 |
+
self.hidden_dim = hidden_dim
|
| 13 |
+
self.giant = giant
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
|
| 16 |
+
class SigLIPBBoxRegressor(nn.Module):
|
| 17 |
+
def __init__(self, siglip_model, hidden_dim=768, giant=True):
|
| 18 |
+
super().__init__()
|
| 19 |
+
self.siglip = siglip_model
|
| 20 |
+
|
| 21 |
+
vision_dim = self.siglip.vision_model.config.hidden_size
|
| 22 |
+
text_dim = self.siglip.text_model.config.hidden_size
|
| 23 |
+
if giant: text_dim = 1536
|
| 24 |
+
|
| 25 |
+
self.vision_projector = nn.Sequential(
|
| 26 |
+
nn.Linear(vision_dim, hidden_dim),
|
| 27 |
+
nn.ReLU(),
|
| 28 |
+
nn.Dropout(0.1)
|
| 29 |
+
)
|
| 30 |
+
self.text_projector = nn.Sequential(
|
| 31 |
+
nn.Linear(text_dim, hidden_dim),
|
| 32 |
+
nn.ReLU(),
|
| 33 |
+
nn.Dropout(0.1)
|
| 34 |
+
)
|
| 35 |
+
self.fusion_layer = nn.Sequential(
|
| 36 |
+
nn.Linear(hidden_dim*2, hidden_dim),
|
| 37 |
+
nn.ReLU(),
|
| 38 |
+
nn.Dropout(0.2),
|
| 39 |
+
nn.Linear(hidden_dim, hidden_dim//2),
|
| 40 |
+
nn.ReLU(),
|
| 41 |
+
nn.Dropout(0.1)
|
| 42 |
+
)
|
| 43 |
+
self.topleft_regressor = nn.Sequential(
|
| 44 |
+
nn.Linear(hidden_dim//2, 256),
|
| 45 |
+
nn.ReLU(),
|
| 46 |
+
nn.Dropout(0.1),
|
| 47 |
+
nn.Linear(256, 128),
|
| 48 |
+
nn.ReLU(),
|
| 49 |
+
nn.Linear(128, 2),
|
| 50 |
+
)
|
| 51 |
+
self.bottomright_regressor = nn.Sequential(
|
| 52 |
+
nn.Linear(hidden_dim//2, 256),
|
| 53 |
+
nn.ReLU(),
|
| 54 |
+
nn.Dropout(0.1),
|
| 55 |
+
nn.Linear(256, 128),
|
| 56 |
+
nn.ReLU(),
|
| 57 |
+
nn.Linear(128, 2),
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def forward(self, pixel_values, input_ids):
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = self.siglip(pixel_values=pixel_values, input_ids=input_ids, return_dict=True)
|
| 63 |
+
vision_features = outputs.image_embeds.float()
|
| 64 |
+
text_features = outputs.text_embeds.float()
|
| 65 |
+
|
| 66 |
+
vision_proj = self.vision_projector(vision_features)
|
| 67 |
+
text_proj = self.text_projector(text_features)
|
| 68 |
+
fused = torch.cat([vision_proj, text_proj], dim=1)
|
| 69 |
+
fused_features = self.fusion_layer(fused)
|
| 70 |
+
|
| 71 |
+
topleft_pred = self.topleft_regressor(fused_features)
|
| 72 |
+
bottomright_pred = self.bottomright_regressor(fused_features)
|
| 73 |
+
return torch.cat([topleft_pred, bottomright_pred], dim=1)
|
| 74 |
+
|
| 75 |
+
class Explainer(PreTrainedModel):
|
| 76 |
+
config_class = ExplainerConfig
|
| 77 |
+
|
| 78 |
+
def __init__(self, config):
|
| 79 |
+
super().__init__(config)
|
| 80 |
+
self.siglip_model = SiglipModel.from_pretrained(config.base_model_name)
|
| 81 |
+
self.bbox_regressor = SigLIPBBoxRegressor(self.siglip_model)
|
| 82 |
+
self.processor = AutoProcessor.from_pretrained(config.base_model_name, use_fast=True)
|
| 83 |
+
|
| 84 |
+
def forward(self, pixel_values=None, input_ids=None):
|
| 85 |
+
return self.bbox_regressor(pixel_values, input_ids)
|
| 86 |
+
|
| 87 |
+
def predict(self, image, text, device="cuda"):
|
| 88 |
+
self.to(device)
|
| 89 |
+
self.eval()
|
| 90 |
+
inputs = self.processor(
|
| 91 |
+
text=text,
|
| 92 |
+
images=image,
|
| 93 |
+
return_tensors="pt",
|
| 94 |
+
padding="max_length",
|
| 95 |
+
truncation=True,
|
| 96 |
+
max_length=64
|
| 97 |
+
)
|
| 98 |
+
pixel_values = inputs["pixel_values"].to(device).half()
|
| 99 |
+
input_ids = inputs["input_ids"].to(device)
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
pred_bbox = self.forward(pixel_values, input_ids)
|
| 102 |
+
return pred_bbox[0].cpu().numpy().tolist()
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@classmethod
|
| 106 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
| 107 |
+
# Load config automatically (HF passes `config` here sometimes)
|
| 108 |
+
config = kwargs.pop("config", None)
|
| 109 |
+
if config is None:
|
| 110 |
+
config = PretrainedConfig.from_pretrained(pretrained_model_name_or_path)
|
| 111 |
+
|
| 112 |
+
model = cls(config)
|
| 113 |
+
|
| 114 |
+
checkpoint_path = hf_hub_download(
|
| 115 |
+
repo_id=pretrained_model_name_or_path,
|
| 116 |
+
filename="pytorch_model.bin"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
| 120 |
+
model.siglip_model.load_state_dict(checkpoint["siglip_model"])
|
| 121 |
+
model.bbox_regressor.load_state_dict(checkpoint["bbox_regressor"])
|
| 122 |
+
return model
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b18398c9a5ff1226de68d7cc50080e7aa0efc1ea1370cf816b1a994984afd15
|
| 3 |
+
size 3760831559
|