andreagemelli commited on
Commit
8c49cda
·
verified ·
1 Parent(s): 645c2e1

update licence

Browse files
Files changed (1) hide show
  1. README.md +1 -7
README.md CHANGED
@@ -16,21 +16,15 @@ license: apache-2.0
16
 
17
  <h1>DocExplainer: Document VQA with Bounding Box Localization</h1>
18
 
19
- [![License: CC BY 4.0](https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)
20
- <!-- [![arXiv](https://img.shields.io/badge/arXiv-2501.03403-b31b1b.svg)]() -->
21
- [![HuggingFace](https://img.shields.io/badge/🤗%20Hugging%20Face-Datasets-yellow)](https://huggingface.co/letxbe/DocExplainer)
22
-
23
  </div>
24
 
25
- ## Model description
26
-
27
  DocExplainer is a an approach to Document Visual Question Answering (Document VQA) with bounding box localization.
28
  Unlike standard VLMs that only provide text-based answers, DocExplainer adds **visual evidence through bounding boxes**, making model predictions more interpretable.
29
  It is designed as a **plug-and-play module** to be combined with existing Vision-Language Models (VLMs), decoupling answer generation from spatial grounding.
30
 
31
  - **Authors:** Alessio Chen, Simone Giovannini, Andrea Gemelli, Fabio Coppini, Simone Marinai
32
  - **Affiliations:** [Letxbe AI](https://letxbe.ai/), [University of Florence](https://www.unifi.it/it)
33
- - **License:** CC-BY-4.0
34
  - **Paper:** ["Towards Reliable and Interpretable Document Question Answering via VLMs"](https://arxiv.org/abs/2509.10129) by Alessio Chen et al.
35
 
36
  <div align="center">
 
16
 
17
  <h1>DocExplainer: Document VQA with Bounding Box Localization</h1>
18
 
 
 
 
 
19
  </div>
20
 
 
 
21
  DocExplainer is a an approach to Document Visual Question Answering (Document VQA) with bounding box localization.
22
  Unlike standard VLMs that only provide text-based answers, DocExplainer adds **visual evidence through bounding boxes**, making model predictions more interpretable.
23
  It is designed as a **plug-and-play module** to be combined with existing Vision-Language Models (VLMs), decoupling answer generation from spatial grounding.
24
 
25
  - **Authors:** Alessio Chen, Simone Giovannini, Andrea Gemelli, Fabio Coppini, Simone Marinai
26
  - **Affiliations:** [Letxbe AI](https://letxbe.ai/), [University of Florence](https://www.unifi.it/it)
27
+ - **License:** apache-2.0
28
  - **Paper:** ["Towards Reliable and Interpretable Document Question Answering via VLMs"](https://arxiv.org/abs/2509.10129) by Alessio Chen et al.
29
 
30
  <div align="center">