|
|
|
|
|
import math |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from torch import _softmax_backward_data as _softmax_backward_data |
|
|
|
|
|
|
|
|
class Bert(nn.Module): |
|
|
def __init__(self, config, activation_checkpointing=False): |
|
|
super().__init__() |
|
|
self.embedding = Embedding(config) |
|
|
self.transformer = Encoder(config, activation_checkpointing) |
|
|
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) |
|
|
|
|
|
def get_contextualized(self, input_ids, attention_mask): |
|
|
static_embeddings, relative_embedding = self.embedding(input_ids) |
|
|
contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding) |
|
|
return contextualized_embeddings |
|
|
|
|
|
def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None): |
|
|
contextualized_embeddings = self.get_contextualized(input_ids, attention_mask) |
|
|
|
|
|
if num_masked is None: |
|
|
subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked) |
|
|
|
|
|
gold_labels = masked_lm_labels.flatten() |
|
|
gold_labels = gold_labels[gold_labels != -100] |
|
|
|
|
|
loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean() |
|
|
z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean() |
|
|
|
|
|
with torch.no_grad(): |
|
|
accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean() |
|
|
|
|
|
num_tokens = gold_labels.size(0) |
|
|
|
|
|
return loss, accuracy, z_loss, num_tokens |
|
|
else: |
|
|
masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked) |
|
|
|
|
|
if masked_subword_prediction is not None: |
|
|
masked_gold_labels = masked_lm_labels[:, :num_masked].flatten() |
|
|
masked_gold_labels = masked_gold_labels[masked_gold_labels != -100] |
|
|
|
|
|
masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels) |
|
|
masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean() |
|
|
|
|
|
with torch.no_grad(): |
|
|
masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean() |
|
|
|
|
|
num_masked_tokens = masked_gold_labels.size(0) |
|
|
else: |
|
|
masked_loss = 0.0 |
|
|
masked_z_loss = 0.0 |
|
|
masked_accuracy = 0.0 |
|
|
num_masked_tokens = 0 |
|
|
|
|
|
if causal_subword_prediction is not None: |
|
|
causal_gold_labels = masked_lm_labels[:, num_masked:].flatten() |
|
|
causal_gold_labels = causal_gold_labels[causal_gold_labels != -100] |
|
|
|
|
|
causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels) |
|
|
causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean() |
|
|
|
|
|
with torch.no_grad(): |
|
|
causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean() |
|
|
|
|
|
num_causal_tokens = causal_gold_labels.size(0) |
|
|
else: |
|
|
causal_loss = 0.0 |
|
|
causal_z_loss = 0.0 |
|
|
causal_accuracy = 0.0 |
|
|
num_causal_tokens = 0 |
|
|
|
|
|
loss = ratio * masked_loss + (1 - ratio) * causal_loss |
|
|
z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss |
|
|
|
|
|
with torch.no_grad(): |
|
|
accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy |
|
|
|
|
|
num_tokens = num_masked_tokens + num_causal_tokens |
|
|
|
|
|
return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens |
|
|
|
|
|
|
|
|
|
|
|
class InPlaceSetSlice(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(ctx, full_tensor, last_slice, x_idx, x_val): |
|
|
full_tensor[x_idx] = x_val |
|
|
ctx.x_idx = x_idx |
|
|
ret = torch.Tensor().to(full_tensor.device) |
|
|
ret.set_(full_tensor[:x_idx + 1]) |
|
|
return ret |
|
|
|
|
|
@staticmethod |
|
|
def backward(ctx, grad_out): |
|
|
if ctx.x_idx == 0: |
|
|
return None, None, None, grad_out[ctx.x_idx] |
|
|
else: |
|
|
return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx] |
|
|
|
|
|
|
|
|
def apply_inplace_set(x_acc, x_idx, x_val): |
|
|
full_tensor, last_slice = x_acc |
|
|
new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val) |
|
|
return full_tensor, new_slice |
|
|
|
|
|
|
|
|
class DWAModules(torch.nn.Module): |
|
|
def __init__(self, hidden_size, n_blocks): |
|
|
super().__init__() |
|
|
self.n_blocks = n_blocks |
|
|
self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)]) |
|
|
self.accumulator = None |
|
|
self._init_weights() |
|
|
|
|
|
def _init_weights(self): |
|
|
for module in self.alphas: |
|
|
module.data.zero_() |
|
|
module.data[-1] = 1.0 |
|
|
|
|
|
def init_accumulator(self, x): |
|
|
self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None) |
|
|
self.accumulator = apply_inplace_set(self.accumulator, 0, x) |
|
|
|
|
|
def forward(self, x, block_idx): |
|
|
assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first" |
|
|
self.accumulator = apply_inplace_set( |
|
|
self.accumulator, |
|
|
block_idx + 1, |
|
|
x |
|
|
) |
|
|
x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1) |
|
|
return x |
|
|
|
|
|
|
|
|
class Encoder(nn.Module): |
|
|
def __init__(self, config, activation_checkpointing=False): |
|
|
super().__init__() |
|
|
self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)]) |
|
|
self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)]) |
|
|
self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2) |
|
|
|
|
|
for i, layer in enumerate(self.mlp_layers): |
|
|
layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i))) |
|
|
|
|
|
self.activation_checkpointing = activation_checkpointing |
|
|
|
|
|
def forward(self, x, attention_mask, relative_embedding): |
|
|
self.dwa_modules.init_accumulator(x) |
|
|
for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)): |
|
|
x = x + attention_layer(x, attention_mask, relative_embedding) |
|
|
x = self.dwa_modules(x, block_idx=i * 2) |
|
|
|
|
|
x = x + mlp_layer(x) |
|
|
x = self.dwa_modules(x, block_idx=i * 2 + 1) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class MaskClassifier(nn.Module): |
|
|
def __init__(self, config, subword_embedding): |
|
|
super().__init__() |
|
|
self.nonlinearity = nn.Sequential( |
|
|
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False), |
|
|
nn.Dropout(config.hidden_dropout_prob), |
|
|
nn.Linear(subword_embedding.size(1), subword_embedding.size(0)) |
|
|
) |
|
|
self.initialize(config.hidden_size, subword_embedding) |
|
|
|
|
|
def initialize(self, hidden_size, embedding): |
|
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
|
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
self.nonlinearity[-1].weight = embedding |
|
|
self.nonlinearity[1].bias.data.zero_() |
|
|
self.nonlinearity[-1].bias.data.zero_() |
|
|
|
|
|
def forward(self, x, masked_lm_labels, num_masked=None): |
|
|
if num_masked is None: |
|
|
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze()) |
|
|
x = self.nonlinearity(x) |
|
|
return x |
|
|
else: |
|
|
masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1) |
|
|
mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1) |
|
|
|
|
|
if masked_x.size(1) != 0: |
|
|
masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze()) |
|
|
masked_x = self.nonlinearity(masked_x) |
|
|
else: |
|
|
masked_x = None |
|
|
|
|
|
if causal_x.size(1) != 0: |
|
|
causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze()) |
|
|
causal_x = self.nonlinearity(causal_x) |
|
|
else: |
|
|
causal_x = None |
|
|
|
|
|
return masked_x, causal_x |
|
|
|
|
|
|
|
|
class GeGLU(nn.Module): |
|
|
def forward(self, x): |
|
|
x, gate = x.chunk(2, dim=-1) |
|
|
x = x * F.gelu(gate, approximate='tanh') |
|
|
return x |
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.mlp = nn.Sequential( |
|
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
|
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False), |
|
|
GeGLU(), |
|
|
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False), |
|
|
nn.Linear(config.intermediate_size, config.hidden_size, bias=False), |
|
|
nn.Dropout(config.hidden_dropout_prob) |
|
|
) |
|
|
self.initialize(config.hidden_size) |
|
|
|
|
|
def initialize(self, hidden_size): |
|
|
std = math.sqrt(2.0 / (5.0 * hidden_size)) |
|
|
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.mlp(x) |
|
|
|
|
|
|
|
|
class MaskedSoftmax(torch.autograd.Function): |
|
|
@staticmethod |
|
|
def forward(self, x, mask, dim): |
|
|
self.dim = dim |
|
|
x.masked_fill_(mask, float('-inf')) |
|
|
x = torch.softmax(x, self.dim) |
|
|
x.masked_fill_(mask, 0.0) |
|
|
self.save_for_backward(x) |
|
|
return x |
|
|
|
|
|
@staticmethod |
|
|
def backward(self, grad_output): |
|
|
output, = self.saved_tensors |
|
|
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype) |
|
|
return inputGrad, None, None |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
|
|
|
self.config = config |
|
|
|
|
|
if config.hidden_size % config.num_attention_heads != 0: |
|
|
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}") |
|
|
|
|
|
self.hidden_size = config.hidden_size |
|
|
self.num_heads = config.num_attention_heads |
|
|
self.head_size = config.hidden_size // config.num_attention_heads |
|
|
|
|
|
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) |
|
|
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True) |
|
|
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True) |
|
|
|
|
|
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) |
|
|
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False) |
|
|
|
|
|
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \ |
|
|
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0) |
|
|
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings) |
|
|
position_indices = config.position_bucket_size - 1 + position_indices |
|
|
self.register_buffer("position_indices", position_indices, persistent=True) |
|
|
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
self.scale = 1.0 / math.sqrt(3 * self.head_size) |
|
|
self.initialize() |
|
|
|
|
|
def make_log_bucket_position(self, relative_pos, bucket_size, max_position): |
|
|
sign = torch.sign(relative_pos) |
|
|
mid = bucket_size // 2 |
|
|
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1)) |
|
|
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid |
|
|
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long() |
|
|
return bucket_pos |
|
|
|
|
|
def initialize(self): |
|
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
|
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
self.in_proj_qk.bias.data.zero_() |
|
|
self.in_proj_vg.bias.data.zero_() |
|
|
self.out_proj.bias.data.zero_() |
|
|
|
|
|
def forward(self, hidden_states, attention_mask, relative_embedding): |
|
|
key_len, batch_size, _ = hidden_states.size() |
|
|
query_len = key_len |
|
|
|
|
|
if self.position_indices.size(0) < query_len: |
|
|
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \ |
|
|
- torch.arange(query_len, dtype=torch.long).unsqueeze(0) |
|
|
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512) |
|
|
position_indices = self.config.position_bucket_size - 1 + position_indices |
|
|
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True) |
|
|
|
|
|
hidden_states = self.pre_layer_norm(hidden_states) |
|
|
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) |
|
|
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) |
|
|
gate = F.gelu(gate) |
|
|
|
|
|
pos = self.in_proj_qk(self.dropout(relative_embedding)) |
|
|
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) |
|
|
query_pos, key_pos = pos.chunk(2, dim=-1) |
|
|
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size) |
|
|
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size) |
|
|
|
|
|
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1) |
|
|
|
|
|
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale) |
|
|
|
|
|
query = query.view(batch_size, self.num_heads, query_len, self.head_size) |
|
|
key = key.view(batch_size, self.num_heads, query_len, self.head_size) |
|
|
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len) |
|
|
attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale)) |
|
|
attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos)) |
|
|
|
|
|
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1) |
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
context = torch.bmm(attention_probs.flatten(0, 1), value) |
|
|
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) |
|
|
context = context * gate |
|
|
context = self.post_layer_norm(context) |
|
|
context = self.out_proj(context) |
|
|
context = self.dropout(context) |
|
|
|
|
|
return context |
|
|
|
|
|
|
|
|
class Embedding(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size) |
|
|
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False) |
|
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
|
|
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size)) |
|
|
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
|
|
self.initialize() |
|
|
|
|
|
def initialize(self): |
|
|
std = math.sqrt(2.0 / (5.0 * self.hidden_size)) |
|
|
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std) |
|
|
|
|
|
def forward(self, input_ids): |
|
|
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids))) |
|
|
relative_embeddings = self.relative_layer_norm(self.relative_embedding) |
|
|
return word_embedding, relative_embeddings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import PreTrainedModel |
|
|
from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput |
|
|
from .configuration_gpt_bert import GPTBertConfig |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
DEFAULT_FORCE_CAUSAL_MASK = True |
|
|
EMIT_HIDDEN_STATES_DEFAULT = True |
|
|
|
|
|
|
|
|
def _normalize_mask_tensor(mask): |
|
|
if mask.dtype == torch.bool: |
|
|
if mask.numel() == 0: |
|
|
return mask |
|
|
true_fraction = mask.float().mean().item() |
|
|
if true_fraction > 0.5: |
|
|
mask = ~mask |
|
|
else: |
|
|
mask = mask <= 0 |
|
|
return mask.to(torch.bool) |
|
|
|
|
|
|
|
|
def _ensure_valid_rows(mask): |
|
|
row_masked = mask.all(dim=-1) |
|
|
if row_masked.any(): |
|
|
idx = row_masked.nonzero(as_tuple=False) |
|
|
mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False |
|
|
return mask |
|
|
|
|
|
|
|
|
def _build_future_causal_mask(batch_size, seq_len, device): |
|
|
base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1) |
|
|
return base.unsqueeze(0).expand(batch_size, -1, -1) |
|
|
|
|
|
|
|
|
def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False): |
|
|
batch_size, seq_len = input_ids.shape[:2] |
|
|
device = input_ids.device |
|
|
if attention_mask is None: |
|
|
mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device) |
|
|
else: |
|
|
mask = attention_mask |
|
|
if mask.dim() == 0: |
|
|
mask = mask.unsqueeze(0) |
|
|
if mask.dim() == 1: |
|
|
mask = mask.unsqueeze(0) |
|
|
if mask.dim() == 2: |
|
|
mask = _normalize_mask_tensor(mask) |
|
|
mask = mask.unsqueeze(1) | mask.unsqueeze(2) |
|
|
elif mask.dim() == 3: |
|
|
if mask.size(1) == 1 and mask.size(2) == seq_len: |
|
|
mask = _normalize_mask_tensor(mask.squeeze(1)) |
|
|
mask = mask.unsqueeze(1) | mask.unsqueeze(2) |
|
|
elif mask.size(1) == seq_len and mask.size(2) == 1: |
|
|
mask = _normalize_mask_tensor(mask.squeeze(2)) |
|
|
mask = mask.unsqueeze(1) | mask.unsqueeze(2) |
|
|
else: |
|
|
mask = _normalize_mask_tensor(mask) |
|
|
elif mask.dim() == 4: |
|
|
if mask.size(1) == 1: |
|
|
mask = mask[:, 0] |
|
|
else: |
|
|
mask = mask.any(dim=1) |
|
|
mask = _normalize_mask_tensor(mask) |
|
|
else: |
|
|
raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim())) |
|
|
mask = mask.to(device=device, dtype=torch.bool) |
|
|
if mask.dim() == 2: |
|
|
mask = mask.unsqueeze(1) | mask.unsqueeze(2) |
|
|
if mask.dim() != 3: |
|
|
raise ValueError("attention_mask must broadcast to a square matrix") |
|
|
if mask.size(0) == 1 and batch_size > 1: |
|
|
mask = mask.expand(batch_size, -1, -1).clone() |
|
|
elif mask.size(0) != batch_size: |
|
|
raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size)) |
|
|
rows = min(mask.size(1), seq_len) |
|
|
cols = min(mask.size(2), seq_len) |
|
|
if mask.size(1) != seq_len or mask.size(2) != seq_len: |
|
|
new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device) |
|
|
new_mask[:, :rows, :cols] = mask[:, :rows, :cols] |
|
|
mask = new_mask |
|
|
if force_causal: |
|
|
future_mask = _build_future_causal_mask(mask.size(0), seq_len, device) |
|
|
mask = mask | future_mask |
|
|
mask = _ensure_valid_rows(mask) |
|
|
return mask.unsqueeze(1) |
|
|
|
|
|
|
|
|
class GPTBertForMaskedLM(PreTrainedModel): |
|
|
config_class = GPTBertConfig |
|
|
base_model_prefix = 'gpt_bert' |
|
|
|
|
|
def __init__(self, config: GPTBertConfig): |
|
|
super().__init__(config) |
|
|
self.model = Bert(config) |
|
|
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) |
|
|
|
|
|
def tie_weights(self): |
|
|
try: |
|
|
self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight |
|
|
except Exception: |
|
|
pass |
|
|
return super().tie_weights() |
|
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) |
|
|
static_embeddings, relative_embedding = self.model.embedding(input_ids) |
|
|
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: |
|
|
static_embeddings = static_embeddings.transpose(0, 1) |
|
|
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) |
|
|
hs = contextualized.transpose(0, 1) |
|
|
B, S, H = hs.shape |
|
|
flat = hs.reshape(B * S, H) |
|
|
logits_flat = self.model.classifier.nonlinearity(flat) |
|
|
vocab = logits_flat.size(-1) |
|
|
logits = logits_flat.view(B, S, vocab) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) |
|
|
loss = loss_fct(logits.view(-1, vocab), labels.view(-1)) |
|
|
|
|
|
hidden_states = (hs,) if output_hidden_states else None |
|
|
|
|
|
if not return_dict: |
|
|
outputs = (logits,) |
|
|
if hidden_states is not None: |
|
|
outputs = outputs + (hidden_states,) |
|
|
return ((loss,) + outputs) if loss is not None else outputs |
|
|
|
|
|
return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states) |
|
|
|
|
|
|
|
|
class GPTBertForCausalLM(PreTrainedModel): |
|
|
config_class = GPTBertConfig |
|
|
base_model_prefix = 'gpt_bert' |
|
|
|
|
|
def __init__(self, config: GPTBertConfig): |
|
|
super().__init__(config) |
|
|
self.model = Bert(config) |
|
|
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) |
|
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, **kwargs): |
|
|
return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)} |
|
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) |
|
|
static_embeddings, relative_embedding = self.model.embedding(input_ids) |
|
|
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: |
|
|
static_embeddings = static_embeddings.transpose(0, 1) |
|
|
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) |
|
|
hs = contextualized.transpose(0, 1) |
|
|
B, S, H = hs.shape |
|
|
flat = hs.reshape(B * S, H) |
|
|
logits_flat = self.model.classifier.nonlinearity(flat) |
|
|
vocab = logits_flat.size(-1) |
|
|
logits = logits_flat.view(B, S, vocab) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-100) |
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
|
|
hidden_states = (hs,) if output_hidden_states else None |
|
|
|
|
|
if not return_dict: |
|
|
outputs = (logits,) |
|
|
if hidden_states is not None: |
|
|
outputs = outputs + (hidden_states,) |
|
|
return ((loss,) + outputs) if loss is not None else outputs |
|
|
|
|
|
return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
class ClassifierHead(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.nonlinearity = nn.Sequential( |
|
|
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False), |
|
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False), |
|
|
nn.Dropout(config.classifier_dropout), |
|
|
nn.Linear(config.hidden_size, config.num_labels) |
|
|
) |
|
|
|
|
|
def forward(self, embeddings): |
|
|
return self.nonlinearity(embeddings) |
|
|
|
|
|
|
|
|
class GPTBertForSequenceClassification(PreTrainedModel): |
|
|
config_class = GPTBertConfig |
|
|
base_model_prefix = 'gpt_bert' |
|
|
|
|
|
def __init__(self, config: GPTBertConfig): |
|
|
super().__init__(config) |
|
|
self.model = Bert(config) |
|
|
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK) |
|
|
self.sequence_classifier = ClassifierHead(config) |
|
|
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None): |
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask) |
|
|
static_embeddings, relative_embedding = self.model.embedding(input_ids) |
|
|
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]: |
|
|
static_embeddings = static_embeddings.transpose(0, 1) |
|
|
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding) |
|
|
hs = contextualized.transpose(0, 1) |
|
|
pooled_output = hs[:, 0, :] |
|
|
logits = self.sequence_classifier(pooled_output) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
labels = labels.to(logits.device) |
|
|
problem_type = self.config.problem_type |
|
|
if problem_type is None: |
|
|
if self.config.num_labels == 1: |
|
|
problem_type = "regression" |
|
|
elif labels.dtype in (torch.long, torch.int): |
|
|
problem_type = "single_label_classification" |
|
|
else: |
|
|
problem_type = "multilabel_classification" |
|
|
|
|
|
if problem_type == "regression": |
|
|
logits = logits.squeeze(-1) |
|
|
loss_fct = nn.MSELoss() |
|
|
loss = loss_fct(logits, labels.float()) |
|
|
elif problem_type == "single_label_classification": |
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
|
else: |
|
|
loss_fct = nn.BCEWithLogitsLoss() |
|
|
loss = loss_fct(logits, labels.float()) |
|
|
|
|
|
hidden_states = (hs,) if output_hidden_states else None |
|
|
|
|
|
if not return_dict: |
|
|
outputs = (logits,) |
|
|
if hidden_states is not None: |
|
|
outputs = outputs + (hidden_states,) |
|
|
return ((loss,) + outputs) if loss is not None else outputs |
|
|
|
|
|
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states) |
|
|
|
|
|
|