File size: 29,471 Bytes
df2dc47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
# Original training architecture (verbatim)
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data
class Bert(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.embedding = Embedding(config)
self.transformer = Encoder(config, activation_checkpointing)
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)
def get_contextualized(self, input_ids, attention_mask):
static_embeddings, relative_embedding = self.embedding(input_ids)
contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
return contextualized_embeddings
def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)
if num_masked is None:
subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
gold_labels = masked_lm_labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()
num_tokens = gold_labels.size(0)
return loss, accuracy, z_loss, num_tokens
else:
masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
if masked_subword_prediction is not None:
masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]
masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()
num_masked_tokens = masked_gold_labels.size(0)
else:
masked_loss = 0.0
masked_z_loss = 0.0
masked_accuracy = 0.0
num_masked_tokens = 0
if causal_subword_prediction is not None:
causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]
causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()
num_causal_tokens = causal_gold_labels.size(0)
else:
causal_loss = 0.0
causal_z_loss = 0.0
causal_accuracy = 0.0
num_causal_tokens = 0
loss = ratio * masked_loss + (1 - ratio) * causal_loss
z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss
with torch.no_grad():
accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy
num_tokens = num_masked_tokens + num_causal_tokens
return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens
# From https://github.com/epfml/DenseFormer
class InPlaceSetSlice(torch.autograd.Function):
@staticmethod
def forward(ctx, full_tensor, last_slice, x_idx, x_val):
full_tensor[x_idx] = x_val
ctx.x_idx = x_idx
ret = torch.Tensor().to(full_tensor.device)
ret.set_(full_tensor[:x_idx + 1])
return ret
@staticmethod
def backward(ctx, grad_out):
if ctx.x_idx == 0:
return None, None, None, grad_out[ctx.x_idx]
else:
return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
def apply_inplace_set(x_acc, x_idx, x_val):
full_tensor, last_slice = x_acc
new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
return full_tensor, new_slice
class DWAModules(torch.nn.Module):
def __init__(self, hidden_size, n_blocks):
super().__init__()
self.n_blocks = n_blocks
self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
self.accumulator = None
self._init_weights()
def _init_weights(self):
for module in self.alphas:
module.data.zero_()
module.data[-1] = 1.0
def init_accumulator(self, x):
self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
self.accumulator = apply_inplace_set(self.accumulator, 0, x)
def forward(self, x, block_idx):
assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
self.accumulator = apply_inplace_set(
self.accumulator,
block_idx + 1,
x
)
x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
return x
class Encoder(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
for i, layer in enumerate(self.mlp_layers):
layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
self.activation_checkpointing = activation_checkpointing
def forward(self, x, attention_mask, relative_embedding):
self.dwa_modules.init_accumulator(x)
for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
x = x + attention_layer(x, attention_mask, relative_embedding)
x = self.dwa_modules(x, block_idx=i * 2)
x = x + mlp_layer(x)
x = self.dwa_modules(x, block_idx=i * 2 + 1)
return x
class MaskClassifier(nn.Module):
def __init__(self, config, subword_embedding):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self, hidden_size, embedding):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self, x, masked_lm_labels, num_masked=None):
if num_masked is None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
else:
masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)
if masked_x.size(1) != 0:
masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
masked_x = self.nonlinearity(masked_x)
else:
masked_x = None
if causal_x.size(1) != 0:
causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
causal_x = self.nonlinearity(causal_x)
else:
causal_x = None
return masked_x, causal_x
class GeGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
x = x * F.gelu(gate, approximate='tanh')
return x
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self, hidden_size):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, x):
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self, x, mask, dim):
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self, grad_output):
output, = self.saved_tensors
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_vg.bias.data.zero_()
self.out_proj.bias.data.zero_()
def forward(self, hidden_states, attention_mask, relative_embedding):
key_len, batch_size, _ = hidden_states.size()
query_len = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
gate = F.gelu(gate)
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
query_pos, key_pos = pos.chunk(2, dim=-1)
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
context = context * gate
context = self.post_layer_norm(context)
context = self.out_proj(context)
context = self.dropout(context)
return context
class Embedding(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, input_ids):
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
# HF wrappers that preserve state dict keys and behavior
from transformers import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput
from .configuration_gpt_bert import GPTBertConfig
import torch
import torch.nn as nn
DEFAULT_FORCE_CAUSAL_MASK = True
EMIT_HIDDEN_STATES_DEFAULT = True
def _normalize_mask_tensor(mask):
if mask.dtype == torch.bool:
if mask.numel() == 0:
return mask
true_fraction = mask.float().mean().item()
if true_fraction > 0.5:
mask = ~mask
else:
mask = mask <= 0
return mask.to(torch.bool)
def _ensure_valid_rows(mask):
row_masked = mask.all(dim=-1)
if row_masked.any():
idx = row_masked.nonzero(as_tuple=False)
mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False
return mask
def _build_future_causal_mask(batch_size, seq_len, device):
base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1)
return base.unsqueeze(0).expand(batch_size, -1, -1)
def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False):
batch_size, seq_len = input_ids.shape[:2]
device = input_ids.device
if attention_mask is None:
mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
else:
mask = attention_mask
if mask.dim() == 0:
mask = mask.unsqueeze(0)
if mask.dim() == 1:
mask = mask.unsqueeze(0)
if mask.dim() == 2:
mask = _normalize_mask_tensor(mask)
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
elif mask.dim() == 3:
if mask.size(1) == 1 and mask.size(2) == seq_len:
mask = _normalize_mask_tensor(mask.squeeze(1))
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
elif mask.size(1) == seq_len and mask.size(2) == 1:
mask = _normalize_mask_tensor(mask.squeeze(2))
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
else:
mask = _normalize_mask_tensor(mask)
elif mask.dim() == 4:
if mask.size(1) == 1:
mask = mask[:, 0]
else:
mask = mask.any(dim=1)
mask = _normalize_mask_tensor(mask)
else:
raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim()))
mask = mask.to(device=device, dtype=torch.bool)
if mask.dim() == 2:
mask = mask.unsqueeze(1) | mask.unsqueeze(2)
if mask.dim() != 3:
raise ValueError("attention_mask must broadcast to a square matrix")
if mask.size(0) == 1 and batch_size > 1:
mask = mask.expand(batch_size, -1, -1).clone()
elif mask.size(0) != batch_size:
raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size))
rows = min(mask.size(1), seq_len)
cols = min(mask.size(2), seq_len)
if mask.size(1) != seq_len or mask.size(2) != seq_len:
new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
new_mask[:, :rows, :cols] = mask[:, :rows, :cols]
mask = new_mask
if force_causal:
future_mask = _build_future_causal_mask(mask.size(0), seq_len, device)
mask = mask | future_mask
mask = _ensure_valid_rows(mask)
return mask.unsqueeze(1)
class GPTBertForMaskedLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
def tie_weights(self):
try:
self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
except Exception:
pass
return super().tie_weights()
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
hs = contextualized.transpose(0, 1)
B, S, H = hs.shape
flat = hs.reshape(B * S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(logits.view(-1, vocab), labels.view(-1))
hidden_states = (hs,) if output_hidden_states else None
if not return_dict:
outputs = (logits,)
if hidden_states is not None:
outputs = outputs + (hidden_states,)
return ((loss,) + outputs) if loss is not None else outputs
return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states)
class GPTBertForCausalLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
hs = contextualized.transpose(0, 1)
B, S, H = hs.shape
flat = hs.reshape(B * S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
hidden_states = (hs,) if output_hidden_states else None
if not return_dict:
outputs = (logits,)
if hidden_states is not None:
outputs = outputs + (hidden_states,)
return ((loss,) + outputs) if loss is not None else outputs
return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states)
class ClassifierHead(nn.Module):
def __init__(self, config):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.classifier_dropout),
nn.Linear(config.hidden_size, config.num_labels)
)
def forward(self, embeddings):
return self.nonlinearity(embeddings)
class GPTBertForSequenceClassification(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
self.sequence_classifier = ClassifierHead(config)
def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
hs = contextualized.transpose(0, 1)
pooled_output = hs[:, 0, :]
logits = self.sequence_classifier(pooled_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
problem_type = self.config.problem_type
if problem_type is None:
if self.config.num_labels == 1:
problem_type = "regression"
elif labels.dtype in (torch.long, torch.int):
problem_type = "single_label_classification"
else:
problem_type = "multilabel_classification"
if problem_type == "regression":
logits = logits.squeeze(-1)
loss_fct = nn.MSELoss()
loss = loss_fct(logits, labels.float())
elif problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
else:
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels.float())
hidden_states = (hs,) if output_hidden_states else None
if not return_dict:
outputs = (logits,)
if hidden_states is not None:
outputs = outputs + (hidden_states,)
return ((loss,) + outputs) if loss is not None else outputs
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states)
|