File size: 29,471 Bytes
df2dc47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# Original training architecture (verbatim)
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data


class Bert(nn.Module):
    def __init__(self, config, activation_checkpointing=False):
        super().__init__()
        self.embedding = Embedding(config)
        self.transformer = Encoder(config, activation_checkpointing)
        self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)

    def get_contextualized(self, input_ids, attention_mask):
        static_embeddings, relative_embedding = self.embedding(input_ids)
        contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
        return contextualized_embeddings

    def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
        contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)

        if num_masked is None:
            subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)

            gold_labels = masked_lm_labels.flatten()
            gold_labels = gold_labels[gold_labels != -100]

            loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
            z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()

            with torch.no_grad():
                accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()

            num_tokens = gold_labels.size(0)

            return loss, accuracy, z_loss, num_tokens
        else:
            masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)

            if masked_subword_prediction is not None:
                masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
                masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]

                masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
                masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()

                with torch.no_grad():
                    masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()

                num_masked_tokens = masked_gold_labels.size(0)
            else:
                masked_loss = 0.0
                masked_z_loss = 0.0
                masked_accuracy = 0.0
                num_masked_tokens = 0

            if causal_subword_prediction is not None:
                causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
                causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]

                causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
                causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()

                with torch.no_grad():
                    causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()

                num_causal_tokens = causal_gold_labels.size(0)
            else:
                causal_loss = 0.0
                causal_z_loss = 0.0
                causal_accuracy = 0.0
                num_causal_tokens = 0

            loss = ratio * masked_loss + (1 - ratio) * causal_loss
            z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss

            with torch.no_grad():
                accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy

            num_tokens = num_masked_tokens + num_causal_tokens

            return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens


# From https://github.com/epfml/DenseFormer
class InPlaceSetSlice(torch.autograd.Function):
    @staticmethod
    def forward(ctx, full_tensor, last_slice, x_idx, x_val):
        full_tensor[x_idx] = x_val
        ctx.x_idx = x_idx
        ret = torch.Tensor().to(full_tensor.device)
        ret.set_(full_tensor[:x_idx + 1])
        return ret

    @staticmethod
    def backward(ctx, grad_out):
        if ctx.x_idx == 0:
            return None, None, None, grad_out[ctx.x_idx]
        else:
            return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]


def apply_inplace_set(x_acc, x_idx, x_val):
    full_tensor, last_slice = x_acc
    new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
    return full_tensor, new_slice


class DWAModules(torch.nn.Module):
    def __init__(self, hidden_size, n_blocks):
        super().__init__()
        self.n_blocks = n_blocks
        self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
        self.accumulator = None
        self._init_weights()

    def _init_weights(self):
        for module in self.alphas:
            module.data.zero_()
            module.data[-1] = 1.0

    def init_accumulator(self, x):
        self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
        self.accumulator = apply_inplace_set(self.accumulator, 0, x)

    def forward(self, x, block_idx):
        assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
        self.accumulator = apply_inplace_set(
            self.accumulator,
            block_idx + 1,
            x
        )
        x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
        return x


class Encoder(nn.Module):
    def __init__(self, config, activation_checkpointing=False):
        super().__init__()
        self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
        self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
        self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)

        for i, layer in enumerate(self.mlp_layers):
            layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
            layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))

        self.activation_checkpointing = activation_checkpointing

    def forward(self, x, attention_mask, relative_embedding):
        self.dwa_modules.init_accumulator(x)
        for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
            x = x + attention_layer(x, attention_mask, relative_embedding)
            x = self.dwa_modules(x, block_idx=i * 2)

            x = x + mlp_layer(x)
            x = self.dwa_modules(x, block_idx=i * 2 + 1)

        return x


class MaskClassifier(nn.Module):
    def __init__(self, config, subword_embedding):
        super().__init__()
        self.nonlinearity = nn.Sequential(
            nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.hidden_size, config.hidden_size),
            nn.GELU(),
            nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
            nn.Dropout(config.hidden_dropout_prob),
            nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
        )
        self.initialize(config.hidden_size, subword_embedding)

    def initialize(self, hidden_size, embedding):
        std = math.sqrt(2.0 / (5.0 * hidden_size))
        nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
        self.nonlinearity[-1].weight = embedding
        self.nonlinearity[1].bias.data.zero_()
        self.nonlinearity[-1].bias.data.zero_()

    def forward(self, x, masked_lm_labels, num_masked=None):
        if num_masked is None:
            x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
            x = self.nonlinearity(x)
            return x
        else:
            masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
            mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)

            if masked_x.size(1) != 0:
                masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
                masked_x = self.nonlinearity(masked_x)
            else:
                masked_x = None

            if causal_x.size(1) != 0:
                causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
                causal_x = self.nonlinearity(causal_x)
            else:
                causal_x = None

            return masked_x, causal_x


class GeGLU(nn.Module):
    def forward(self, x):
        x, gate = x.chunk(2, dim=-1)
        x = x * F.gelu(gate, approximate='tanh')
        return x


class FeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
            GeGLU(),
            nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
            nn.Dropout(config.hidden_dropout_prob)
        )
        self.initialize(config.hidden_size)

    def initialize(self, hidden_size):
        std = math.sqrt(2.0 / (5.0 * hidden_size))
        nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)

    def forward(self, x):
        return self.mlp(x)


class MaskedSoftmax(torch.autograd.Function):
    @staticmethod
    def forward(self, x, mask, dim):
        self.dim = dim
        x.masked_fill_(mask, float('-inf'))
        x = torch.softmax(x, self.dim)
        x.masked_fill_(mask, 0.0)
        self.save_for_backward(x)
        return x

    @staticmethod
    def backward(self, grad_output):
        output, = self.saved_tensors
        inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
        return inputGrad, None, None


class Attention(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // config.num_attention_heads

        self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
        self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
        self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)

        self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
        self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)

        position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
            - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
        position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
        position_indices = config.position_bucket_size - 1 + position_indices
        self.register_buffer("position_indices", position_indices, persistent=True)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.scale = 1.0 / math.sqrt(3 * self.head_size)
        self.initialize()

    def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
        sign = torch.sign(relative_pos)
        mid = bucket_size // 2
        abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
        log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
        bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
        return bucket_pos

    def initialize(self):
        std = math.sqrt(2.0 / (5.0 * self.hidden_size))
        nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
        self.in_proj_qk.bias.data.zero_()
        self.in_proj_vg.bias.data.zero_()
        self.out_proj.bias.data.zero_()

    def forward(self, hidden_states, attention_mask, relative_embedding):
        key_len, batch_size, _ = hidden_states.size()
        query_len = key_len

        if self.position_indices.size(0) < query_len:
            position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
                - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
            position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
            position_indices = self.config.position_bucket_size - 1 + position_indices
            self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)

        hidden_states = self.pre_layer_norm(hidden_states)
        query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2)  # shape: [T, B, D]
        value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2)  # shape: [T, B, D]
        gate = F.gelu(gate)

        pos = self.in_proj_qk(self.dropout(relative_embedding))  # shape: [2T-1, 2D]
        pos = F.embedding(self.position_indices[:query_len, :key_len], pos)  # shape: [T, T, 2D]
        query_pos, key_pos = pos.chunk(2, dim=-1)
        query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
        key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)

        query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
        key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
        value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)

        attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)

        query = query.view(batch_size, self.num_heads, query_len, self.head_size)
        key = key.view(batch_size, self.num_heads, query_len, self.head_size)
        attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
        attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
        attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))

        attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)

        attention_probs = self.dropout(attention_probs)
        context = torch.bmm(attention_probs.flatten(0, 1), value)  # shape: [B*H, Q, D]
        context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size)  # shape: [Q, B, H*D]
        context = context * gate
        context = self.post_layer_norm(context)
        context = self.out_proj(context)
        context = self.dropout(context)

        return context


class Embedding(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
        self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.initialize()

    def initialize(self):
        std = math.sqrt(2.0 / (5.0 * self.hidden_size))
        nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
        nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)

    def forward(self, input_ids):
        word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
        relative_embeddings = self.relative_layer_norm(self.relative_embedding)
        return word_embedding, relative_embeddings


# HF wrappers that preserve state dict keys and behavior

        from transformers import PreTrainedModel
        from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions, SequenceClassifierOutput
        from .configuration_gpt_bert import GPTBertConfig
        import torch
        import torch.nn as nn

        DEFAULT_FORCE_CAUSAL_MASK = True
        EMIT_HIDDEN_STATES_DEFAULT = True


        def _normalize_mask_tensor(mask):
            if mask.dtype == torch.bool:
                if mask.numel() == 0:
                    return mask
                true_fraction = mask.float().mean().item()
                if true_fraction > 0.5:
                    mask = ~mask
            else:
                mask = mask <= 0
            return mask.to(torch.bool)


        def _ensure_valid_rows(mask):
            row_masked = mask.all(dim=-1)
            if row_masked.any():
                idx = row_masked.nonzero(as_tuple=False)
                mask[idx[:, 0], idx[:, 1], idx[:, 1]] = False
            return mask


        def _build_future_causal_mask(batch_size, seq_len, device):
            base = torch.triu(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device), diagonal=1)
            return base.unsqueeze(0).expand(batch_size, -1, -1)


        def _build_babylm_attention_mask(input_ids, attention_mask, force_causal=False):
            batch_size, seq_len = input_ids.shape[:2]
            device = input_ids.device
            if attention_mask is None:
                mask = torch.zeros(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
            else:
                mask = attention_mask
                if mask.dim() == 0:
                    mask = mask.unsqueeze(0)
                if mask.dim() == 1:
                    mask = mask.unsqueeze(0)
                if mask.dim() == 2:
                    mask = _normalize_mask_tensor(mask)
                    mask = mask.unsqueeze(1) | mask.unsqueeze(2)
                elif mask.dim() == 3:
                    if mask.size(1) == 1 and mask.size(2) == seq_len:
                        mask = _normalize_mask_tensor(mask.squeeze(1))
                        mask = mask.unsqueeze(1) | mask.unsqueeze(2)
                    elif mask.size(1) == seq_len and mask.size(2) == 1:
                        mask = _normalize_mask_tensor(mask.squeeze(2))
                        mask = mask.unsqueeze(1) | mask.unsqueeze(2)
                    else:
                        mask = _normalize_mask_tensor(mask)
                elif mask.dim() == 4:
                    if mask.size(1) == 1:
                        mask = mask[:, 0]
                    else:
                        mask = mask.any(dim=1)
                    mask = _normalize_mask_tensor(mask)
                else:
                    raise ValueError("Unsupported attention_mask dimensions: {}".format(mask.dim()))
                mask = mask.to(device=device, dtype=torch.bool)
                if mask.dim() == 2:
                    mask = mask.unsqueeze(1) | mask.unsqueeze(2)
                if mask.dim() != 3:
                    raise ValueError("attention_mask must broadcast to a square matrix")
                if mask.size(0) == 1 and batch_size > 1:
                    mask = mask.expand(batch_size, -1, -1).clone()
                elif mask.size(0) != batch_size:
                    raise ValueError("attention_mask batch dimension {} does not match inputs {}".format(mask.size(0), batch_size))
                rows = min(mask.size(1), seq_len)
                cols = min(mask.size(2), seq_len)
                if mask.size(1) != seq_len or mask.size(2) != seq_len:
                    new_mask = torch.ones(batch_size, seq_len, seq_len, dtype=torch.bool, device=device)
                    new_mask[:, :rows, :cols] = mask[:, :rows, :cols]
                    mask = new_mask
            if force_causal:
                future_mask = _build_future_causal_mask(mask.size(0), seq_len, device)
                mask = mask | future_mask
            mask = _ensure_valid_rows(mask)
            return mask.unsqueeze(1)


        class GPTBertForMaskedLM(PreTrainedModel):
            config_class = GPTBertConfig
            base_model_prefix = 'gpt_bert'

            def __init__(self, config: GPTBertConfig):
                super().__init__(config)
                self.model = Bert(config)
                self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)

            def tie_weights(self):
                try:
                    self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
                except Exception:
                    pass
                return super().tie_weights()

            def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
                output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
                return_dict = return_dict if return_dict is not None else self.config.use_return_dict

                mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
                static_embeddings, relative_embedding = self.model.embedding(input_ids)
                if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
                    static_embeddings = static_embeddings.transpose(0, 1)
                contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
                hs = contextualized.transpose(0, 1)
                B, S, H = hs.shape
                flat = hs.reshape(B * S, H)
                logits_flat = self.model.classifier.nonlinearity(flat)
                vocab = logits_flat.size(-1)
                logits = logits_flat.view(B, S, vocab)

                loss = None
                if labels is not None:
                    loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
                    loss = loss_fct(logits.view(-1, vocab), labels.view(-1))

                hidden_states = (hs,) if output_hidden_states else None

                if not return_dict:
                    outputs = (logits,)
                    if hidden_states is not None:
                        outputs = outputs + (hidden_states,)
                    return ((loss,) + outputs) if loss is not None else outputs

                return MaskedLMOutput(loss=loss, logits=logits, hidden_states=hidden_states)


        class GPTBertForCausalLM(PreTrainedModel):
            config_class = GPTBertConfig
            base_model_prefix = 'gpt_bert'

            def __init__(self, config: GPTBertConfig):
                super().__init__(config)
                self.model = Bert(config)
                self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)

            def prepare_inputs_for_generation(self, input_ids, **kwargs):
                return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}

            def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
                output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
                return_dict = return_dict if return_dict is not None else self.config.use_return_dict

                mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
                static_embeddings, relative_embedding = self.model.embedding(input_ids)
                if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
                    static_embeddings = static_embeddings.transpose(0, 1)
                contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
                hs = contextualized.transpose(0, 1)
                B, S, H = hs.shape
                flat = hs.reshape(B * S, H)
                logits_flat = self.model.classifier.nonlinearity(flat)
                vocab = logits_flat.size(-1)
                logits = logits_flat.view(B, S, vocab)

                loss = None
                if labels is not None:
                    shift_logits = logits[..., :-1, :].contiguous()
                    shift_labels = labels[..., 1:].contiguous()
                    loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
                    loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

                hidden_states = (hs,) if output_hidden_states else None

                if not return_dict:
                    outputs = (logits,)
                    if hidden_states is not None:
                        outputs = outputs + (hidden_states,)
                    return ((loss,) + outputs) if loss is not None else outputs

                return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits, hidden_states=hidden_states)



class ClassifierHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.nonlinearity = nn.Sequential(
            nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
            nn.Linear(config.hidden_size, config.hidden_size),
            nn.GELU(),
            nn.LayerNorm(config.hidden_size, config.classifier_layer_norm_eps, elementwise_affine=False),
            nn.Dropout(config.classifier_dropout),
            nn.Linear(config.hidden_size, config.num_labels)
        )

    def forward(self, embeddings):
        return self.nonlinearity(embeddings)


class GPTBertForSequenceClassification(PreTrainedModel):
    config_class = GPTBertConfig
    base_model_prefix = 'gpt_bert'

    def __init__(self, config: GPTBertConfig):
        super().__init__(config)
        self.model = Bert(config)
        self.force_causal_mask = getattr(config, "force_causal_mask", DEFAULT_FORCE_CAUSAL_MASK)
        self.sequence_classifier = ClassifierHead(config)

    def forward(self, input_ids, attention_mask=None, labels=None, output_hidden_states=None, return_dict=None):
        output_hidden_states = output_hidden_states if output_hidden_states is not None else (self.config.output_hidden_states or EMIT_HIDDEN_STATES_DEFAULT)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        mask_4d = _build_babylm_attention_mask(input_ids, attention_mask, force_causal=self.force_causal_mask)
        static_embeddings, relative_embedding = self.model.embedding(input_ids)
        if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
            static_embeddings = static_embeddings.transpose(0, 1)
        contextualized = self.model.transformer(static_embeddings, mask_4d, relative_embedding)
        hs = contextualized.transpose(0, 1)
        pooled_output = hs[:, 0, :]
        logits = self.sequence_classifier(pooled_output)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            problem_type = self.config.problem_type
            if problem_type is None:
                if self.config.num_labels == 1:
                    problem_type = "regression"
                elif labels.dtype in (torch.long, torch.int):
                    problem_type = "single_label_classification"
                else:
                    problem_type = "multilabel_classification"

            if problem_type == "regression":
                logits = logits.squeeze(-1)
                loss_fct = nn.MSELoss()
                loss = loss_fct(logits, labels.float())
            elif problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
            else:
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(logits, labels.float())

        hidden_states = (hs,) if output_hidden_states else None

        if not return_dict:
            outputs = (logits,)
            if hidden_states is not None:
                outputs = outputs + (hidden_states,)
            return ((loss,) + outputs) if loss is not None else outputs

        return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states)