File size: 1,627 Bytes
198e885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from transformers import PretrainedConfig

class GPTBertConfig(PretrainedConfig):
    model_type = 'gpt_bert'

    def __init__(self, **kwargs):
        self.attention_probs_dropout_prob = kwargs.pop('attention_probs_dropout_prob', 0.1)
        self.hidden_dropout_prob = kwargs.pop('hidden_dropout_prob', 0.1)
        self.hidden_size = kwargs.pop('hidden_size', 768)
        self.intermediate_size = kwargs.pop('intermediate_size', 2560)
        self.max_position_embeddings = kwargs.pop('max_position_embeddings', 512)
        self.position_bucket_size = kwargs.pop('position_bucket_size', 32)
        self.num_attention_heads = kwargs.pop('num_attention_heads', 12)
        self.num_hidden_layers = kwargs.pop('num_hidden_layers', 12)
        self.vocab_size = kwargs.pop('vocab_size', 16384)
        self.layer_norm_eps = kwargs.pop('layer_norm_eps', 1e-5)
        self.force_causal_mask = kwargs.pop('force_causal_mask', True)
        self.classifier_dropout = kwargs.pop('classifier_dropout', 0.1)
        self.classifier_layer_norm_eps = kwargs.pop('classifier_layer_norm_eps', 1e-05)
        self.num_labels = kwargs.pop('num_labels', 2)
        self.problem_type = kwargs.pop('problem_type', None)
        self.auto_map = {
    'AutoConfig': 'configuration_gpt_bert.GPTBertConfig',
    'AutoModel': 'modeling_gpt_bert.GPTBertForMaskedLM',
    'AutoModelForCausalLM': 'modeling_gpt_bert.GPTBertForCausalLM',
    'AutoModelForMaskedLM': 'modeling_gpt_bert.GPTBertForMaskedLM',
    'AutoModelForSequenceClassification': 'modeling_gpt_bert.GPTBertForSequenceClassification',
        }
        super().__init__(**kwargs)