Makandal Continue Pre-trained from qwen3-0.6b
Model Details
This model has been continued pre-trained from qwen3-0.6b by Palmis Labs AI. .
Model Description
- Developed by: Palmis Labs AI
- Funded by: Jean Sauvenel Beaudry
- Model type: GPT (Generative Pre-trained Transformer)
- Language(s) (NLP): Haitian Creole
- License: MIT
- Model size: 0.6B parameters
- Architecture: qwen3
Direct Use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
def generate(model, tokenizer, prompt, device):
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
output = model.generate(
**inputs,
max_new_tokens=100,
do_sample=True,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
temperature=0.9,
top_k=40,
top_p=0.85,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("jsbeaudry/makandal-v2")
model = AutoModelForCausalLM.from_pretrained("jsbeaudry/makandal-v2")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Generate text
prompt = "matematik"
response = generate(model, tokenizer, prompt, device)
print(response)
# Answer:
# Matematik se yon disiplin matematik ki konsantre sou kalkil, estatistik, ak analiz matematik.
# Li pèmèt nou konprann enfòmasyon ak fòmèlman analize done pou jwenn pwopriyete oswa fòmèlman verifye yon konpreyansyon.
Out-of-Scope Use
This model should NOT be used for:
- Critical decision-making systems
- Any application requiring reliable or factual outputs
- Commercial deployment without significant additional training
Bias, Risks, and Limitations
- Insufficient training data: Only 4.7 MB of training data used
- Limited training time: Only 4.5 hours of training
- High hallucination rate: Model frequently generates inaccurate or nonsensical content
- Language coverage: Limited Haitian Creole language understanding due to minimal dataset
- Bias: May reflect biases present in the small training dataset
Recommendations
- Do not rely on outputs for factual information
- Supervise usage in educational settings
Training Infrastructure
- GPU: Tesla T4 (15GB)
- Framework: Transformers/PyTorch
Citation
@misc{makandal2025,
title={Makandal-pretrain: An Educational Haitian Creole Language Model},
author={Jean Sauvenel Beaudry},
year={2025},
howpublished={\url{https://huggingface.co/jsbeaudry/makandal-pre-trained}},
note={Educational demonstration model}
}
Glossary
Makandal: Named after François Makandal, an 18th-century Haitian revolutionary leader, symbolizing the model's connection to Haitian culture and education.
- Downloads last month
- 11
Model tree for jsbeaudry/makandal-v2
Unable to build the model tree, the base model loops to the model itself. Learn more.