File size: 4,276 Bytes
73daac0
 
 
f5649bc
 
 
 
 
 
 
73daac0
 
f5649bc
73daac0
86adbd9
73daac0
f5649bc
73daac0
 
 
 
 
86adbd9
 
 
 
 
 
 
 
f5649bc
73daac0
f5649bc
73daac0
86adbd9
 
 
27944de
f5649bc
73daac0
 
 
 
 
86adbd9
 
 
73daac0
f5649bc
73daac0
86adbd9
 
 
73daac0
 
 
86adbd9
 
 
73daac0
f5649bc
73daac0
f5649bc
73daac0
86adbd9
 
 
 
 
 
73daac0
 
 
86adbd9
73daac0
f5649bc
73daac0
f5649bc
73daac0
f5649bc
 
 
73daac0
f5649bc
 
73daac0
f5649bc
 
 
73daac0
f5649bc
73daac0
f5649bc
 
 
73daac0
f5649bc
 
 
86adbd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
base_model: Qwen/Qwen1.5-7B
library_name: peft
tags:
  - LoRA
  - TLE
  - space-domain-awareness
  - trajectory-prediction
  - orbital-mechanics
license: other        
---

# tle-orbit-explainer

A LoRA adapter for **Qwen-1.5-7B** that translates raw Two-Line Elements (TLEs) into natural-language orbit explanations, decay risk scores, and anomaly flags for general space awareness workflows.

---

## Model Details

### Model Description

|                    |                                                             |
| ------------------ | ----------------------------------------------------------- |
| **Developed by**   | Jack Al-Kahwati / Stardrive                                 |
| **Funded by**      | ⬜️ (Self-funded)                                            |
| **Shared by**      | jackal79 (Hugging Face)                                     |
| **Model type**     | LoRA adapter (`peft==0.10.0`)                               |
| **Languages**      | English                                                     |
| **License**        | apache-2.0                                                  |
| **Finetuned from** | [`Qwen/Qwen1.5-7B`](https://huggingface.co/Qwen/Qwen1.5-7B) |

### Model Sources

|                  |                                                                                                            |
| ---------------- | ---------------------------------------------------------------------------------------------------------- |
| **Repository**   | [https://huggingface.co/jackal79/tle-orbit-explainer](https://huggingface.co/jackal79/tle-orbit-explainer) |
| **Paper / Blog** | https://medium.com/@jack_16944/enhancing-space-awareness-with-fine-tuned-transformer-models-introducing-tle-orbit-explainer-67ae40653ed5                                                                                        |
---

## Uses

### Direct Use

* Quick summarization of satellite orbital states for analysts
* Plain-language TLE explanations for educational purposes
* Offline dataset labeling (orbital classifications)

### Downstream Use

* Combine with SGP4 for enhanced position forecasting
* Integration into satellite autonomy stacks (cubesats, small-scale hardware)
* Pre-prompted agent support in secure orbital management workflows

### Out-of-Scope Use

* High-precision orbit propagation without additional physics modeling
* Applications related to targeting, weapons systems, or lethal autonomous decisions
* Jurisdictions prohibiting ML or data export (verify with ITAR/EAR guidelines)

---

## Bias, Risks, & Limitations

| Category            | Note                                                                                                          |
| ------------------- | ------------------------------------------------------------------------------------------------------------- |
| **Data bias**       | Trained primarily on decayed objects (`DECAY = 1`), possibly underestimating longevity for active satellites. |
| **Temporal limits** | Operates on snapshot data; does not handle continuous high-frequency time-series.                             |
| **Language**        | Supports explanations in English only.                                                                        |
| **Accuracy**        | Potential inaccuracies in decay date predictions; verify independently.                                       |

### Recommendations

Incorporate independent physics-based validation before operational use and maintain a human-in-the-loop for any critical or high-risk decisions.

---

## How to Get Started

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from peft import PeftModel

base = "Qwen/Qwen1.5-7B"
lora = "jackal79/tle-orbit-explainer"

tok   = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(base, device_map="auto")
model = PeftModel.from_pretrained(model, lora)  # merges LoRA

pipe = pipeline("text-generation", model=model, tokenizer=tok, device=0)

prompt = """### Prompt:
1 25544U 98067A   24079.07757601 .00016717 00000+0 10270-3 0  9994
2 25544  51.6400 337.6640 0007776  35.5310 330.5120 15.50377579499263

### Reasoning:
"""
print(pipe(prompt, max_new_tokens=120)[0]["generated_text"])
```