# mypy: allow-untyped-defs import math import traceback from dataclasses import dataclass from enum import auto, Enum from typing import Any, Optional import torch import torch.distributed as dist import torch.nn as nn from torch.distributed._composable.contract import _get_registry from torch.distributed.tensor import DeviceMesh, DTensor from torch.distributed.tensor._dtensor_spec import DTensorSpec _compiled_autograd_enabled: bool = False if torch._running_with_deploy(): def detect_compiled_autograd(): pass def compiled_autograd_enabled(): return False else: def detect_compiled_autograd(): assert not torch.compiler.is_compiling(), ( "`detect_compiled_autograd()` is designed to be called in eager mode" ) global _compiled_autograd_enabled import torch._dynamo.compiled_autograd as ca _compiled_autograd_enabled = ( ca.compiled_autograd_enabled or ca.compiled_autograd_enabled_force_eager or ca.in_compiled_autograd_region ) def compiled_autograd_enabled(): global _compiled_autograd_enabled return _compiled_autograd_enabled @dataclass class DataParallelMeshInfo: mesh: DeviceMesh shard_mesh_dim: Optional[int] = None replicate_mesh_dim: Optional[int] = None def __post_init__(self): if self.shard_mesh_dim is None and self.replicate_mesh_dim is None: raise AssertionError( "At least one of shard_mesh_dim and replicate_mesh_dim must not be None" ) @dataclass class FSDPMeshInfo(DataParallelMeshInfo): def __post_init__(self): super().__post_init__() if self.shard_mesh_dim is None: raise AssertionError("Expects non-None shard_mesh_dim") self.shard_mesh_size: int = self.mesh.size(self.shard_mesh_dim) self.shard_process_group = self.mesh.get_group(self.shard_mesh_dim) self.shard_mesh_rank: int = self.shard_process_group.rank() @dataclass class DDPMeshInfo(DataParallelMeshInfo): def __post_init__(self): super().__post_init__() if self.replicate_mesh_dim is None: raise AssertionError("Expects non-None replicate_mesh_dim") self.replicate_mesh_size: int = self.mesh.size(self.replicate_mesh_dim) self.replicate_process_group = self.mesh.get_group(self.replicate_mesh_dim) self.replicate_mesh_rank: int = self.replicate_process_group.rank() @dataclass class HSDPMeshInfo(FSDPMeshInfo, DDPMeshInfo): def __post_init__(self): # Calls `FSDPMeshInfo` -> `DDPMeshInfo` -> `DataParallelMeshInfo` super().__post_init__() class TrainingState(Enum): """Describes the training state of one FSDP state / parameter group.""" # Transition to forward starting pre-forward until post-forward FORWARD = auto() # Transition to pre-backward when unsharding in backward PRE_BACKWARD = auto() # Transition to post-backward when resharding and reducing gradients POST_BACKWARD = auto() # Idle before/after forward or before pre-backward/after post-backward IDLE = auto() def _raise_assert_with_print(*args: Any, **kwargs: Any): print(f"[Rank {dist.get_rank()}] ", end="") print(*args, **kwargs) traceback.print_stack() raise AssertionError(*args, **kwargs) def _is_composable_with_fsdp(module: nn.Module) -> bool: registry = _get_registry(module) if registry is None: return True # Registry keys by function name return "replicate" not in registry def _get_dim0_padded_size(tensor_size: torch.Size, dim0_factor: int) -> torch.Size: padded_dim0 = math.ceil(tensor_size[0] / dim0_factor) * dim0_factor return torch.Size([padded_dim0]) + tensor_size[1:] def _chunk_with_empty( tensor: torch.Tensor, num_chunks: int, dim: int ) -> list[torch.Tensor]: chunks = list(torch.chunk(tensor, num_chunks, dim=dim)) while len(chunks) < num_chunks: chunks.append(chunks[0].new_empty(0)) return chunks def _get_dim_chunked_size( chunk: torch.Tensor, unchunked_size: torch.Size, dim: int ) -> torch.Size: if chunk.numel() > 0: return chunk.size() # For 0 numel, we need to preserve nonzero-sized dims for DTensor APIs return unchunked_size[:dim] + torch.Size([0]) + unchunked_size[dim + 1 :] def _from_local_no_grad( local_tensor: torch.Tensor, sharding_spec: DTensorSpec, ) -> DTensor: """ This method is similar to ``DTensor.from_local()`` except that in eager mode it avoids some CPU overhead by avoiding default args and not being differentiable. """ if not compiled_autograd_enabled(): return DTensor( # Use the local tensor directly instead of constructing a new tensor # variable, e.g. with `view_as()`, since this is not differentiable local_tensor, sharding_spec, requires_grad=local_tensor.requires_grad, ) else: return DTensor.from_local( local_tensor, sharding_spec.mesh, sharding_spec.placements, shape=sharding_spec.shape, stride=sharding_spec.stride, ) def _to_dtype_if_needed( tensor: torch.Tensor, dtype: Optional[torch.dtype] ) -> torch.Tensor: if dtype is not None and tensor.dtype != dtype: return tensor.to(dtype) return tensor def _cast_fp_tensor(dtype: torch.dtype, x: torch.Tensor) -> torch.Tensor: if ( not isinstance(x, torch.Tensor) or not torch.is_floating_point(x) or x.dtype == dtype ): return x return x.to(dtype)