File size: 4,775 Bytes
210a2ae
 
 
f8a3c83
5b37ee3
 
a3541e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210a2ae
 
 
 
 
e8f4fa4
210a2ae
d87b2e9
 
 
 
 
 
 
 
 
 
21a5953
d87b2e9
 
 
 
 
 
 
 
 
04986b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3541e7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
language:
- en
license: apache-2.0
tags:
- merge
model-index:
- name: NeuralHermes-MoE-2x7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 62.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.21
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 43.61
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.86
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ibndias/NeuralHermes-MoE-2x7B
      name: Open LLM Leaderboard
---

# NeuralHermes-MoE-2x7B

This is a mix between teknium/OpenHermes-2.5-Mistral-7B and Intel/neural-chat-7b-v3-3.
Using mistralai/Mistral-7B-v0.1 as the base model.

This Mixture of Expert was done using `mergekit` method.

# Getting Started

```python
import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="ibndias/NeuralHermes-MoE-2x7B",torch_dtype=torch.bfloat16, device_map="auto")

prompt = """<|system|> You are a helpful assistant.
<|user|>
Write me bash script to scan ip 192.3.1.4 with nmap only port that ends with 9 from 1-100.
<|assistant|>
"""
outputs = pipe(prompt, max_new_tokens=512, do_sample=True, temperature=0.2, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

Output:
><|system|> You are a helpful assistant.
><|user|>
>Write me bash script to scan ip 192.3.1.4 with nmap only port that ends with 9 from 1-100.
><|assistant|>
>Sure, here's a bash script that scans the specified IP address with nmap for open ports that end with 9 from 1 to 100:
>```
>#!/bin/bash
>IP_ADDRESS="192.3.1.4"
>START_PORT=1
>END_PORT=100
>for ((i=$START_PORT; i<=$END_PORT; i++)); do
>    PORT=$i
>    if [[ $PORT % 10 == 9 ]]; then
>        nmap -p $PORT $IP_ADDRESS
>    fi
>done
>```
>Save the script with a.sh extension (e.g., scan_ports.sh) and make it executable by running `chmod +x scan_ports.sh`. Then, run the script by executing `./scan_ports.sh`.
>...
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ibndias__NeuralHermes-MoE-2x7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |64.08|
|AI2 Reasoning Challenge (25-Shot)|62.12|
|HellaSwag (10-Shot)              |84.21|
|MMLU (5-Shot)                    |64.56|
|TruthfulQA (0-shot)              |43.61|
|Winogrande (5-shot)              |78.14|
|GSM8k (5-shot)                   |51.86|