--- base_model: - microsoft/bitnet-b1.58-2B-4T datasets: - MAmmoTH-VL/MAmmoTH-VL-Instruct-12M - liuhaotian/LLaVA-Pretrain - hongyuw/BitVLA-MAmmoTH-VL language: - en license: mit metrics: - accuracy pipeline_tag: image-text-to-text tags: - 1-bit - VLA - VLM library_name: transformers --- # BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation [[paper]](https://arxiv.org/abs/2506.07530) [[model]](https://huggingface.co/collections/hongyuw/bitvla-68468fb1e3aae15dd8a4e36e) [[code]](https://github.com/ustcwhy/BitVLA) - June 2025: [BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation](https://arxiv.org/abs/2506.07530) ## Open Source Plan - ✅ Paper, Pre-trained VLM and evaluation code. - ✅ Fine-tuned VLA code and models - 🧭 Pre-training code and VLA. ## Contents - [BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation](#bitvla-1-bit-vision-language-action-models-for-robotics-manipulation) - [Contents](#contents) - [Checkpoints](#checkpoints) - [Vision-Language](#vision-language) - [Evaluation on VQA](#evaluation-on-vqa) - [Vision-Language-Action](#vision-language-action) - [OFT Training](#oft-training) - [1. Preparing OFT](#1-preparing-oft) - [2. OFT fine-tuning](#2-oft-fine-tuning) - [Evaluation on LIBERO](#evaluation-on-libero) - [Acknowledgement](#acknowledgement) - [Citation](#citation) - [License](#license) - [Contact Information](#contact-information) ## Checkpoints | Model | Path | | -------------- | ----- | | BitVLA | [hongyuw/bitvla-bitsiglipL-224px-bf16](https://huggingface.co/hongyuw/bitvla-bitsiglipL-224px-bf16) | | BitVLA finetuned on LIBERO-Spatial | [hongyuw/ft-bitvla-bitsiglipL-224px-libero_spatial-bf16](https://huggingface.co/hongyuw/ft-bitvla-bitsiglipL-224px-libero_spatial-bf16) | | BitVLA finetuned on LIBERO-Object | [hongyuw/ft-bitvla-bitsiglipL-224px-libero_object-bf16](https://huggingface.co/hongyuw/ft-bitvla-bitsiglipL-224px-libero_object-bf16) | | BitVLA finetuned on LIBERO-Goal | [hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16](https://huggingface.co/hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16) | | BitVLA finetuned on LIBERO-Long | [hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16](https://huggingface.co/hongyuw/ft-bitvla-bitsiglipL-224px-libero_long-bf16) | | BitVLA w/ BF16 SigLIP | [hongyuw/bitvla-siglipL-224px-bf16](https://huggingface.co/hongyuw/bitvla-siglipL-224px-bf16) | *Note that we provide the master weights of BitVLA and perform online quantization. For actual memory savings, you may quantize the weights offline to 1.58-bit precision. We recommend using the [bitnet.cpp](https://github.com/microsoft/bitnet) inference framework to accurately measure the reduction in inference cost.* *Due to limited resources, we have not yet pre-trained BitVLA on a large-scale robotics dataset. We are actively working to secure additional compute resources to conduct this pre-training.* ## Vision-Language ### Evaluation on VQA We use the [LMM-Eval](https://github.com/ustcwhy/BitVLA/tree/main/lmms-eval) toolkit to conduct evaluations on VQA tasks. We provide the [transformers repo](https://github.com/ustcwhy/BitVLA/tree/main/transformers) in which we modify the [modeling_llava.py](https://github.com/ustcwhy/BitVLA/blob/main/transformers/src/transformers/models/llava/modeling_llava.py) and [modeling_siglip.py](https://github.com/ustcwhy/BitVLA/blob/main/transformers/src/transformers/models/siglip/modeling_siglip.py) to support the W1.58-A8 quantization. The evaluation should use nvidia_24_07 docker. Install the packages: ```bash docker run --name nvidia_24_07 --privileged --net=host --ipc=host --gpus=all -v /mnt:/mnt -v /tmp:/tmp -d nvcr.io/nvidia/pytorch:24.07-py3 sleep infinity # only use for multimodal evaluation docker exec -it nvidia_24_07 bash git clone https://github.com/ustcwhy/BitVLA.git cd BitVLA/ bash vl_eval_setup.sh # only use for multimodal evaluation ``` First, download the BitVLA model from HuggingFace: ```bash git clone https://huggingface.co/hongyuw/bitvla-bitsiglipL-224px-bf16 # BitVLA w/ W1.58-A8 SigLIP-L git clone https://huggingface.co/hongyuw/bitvla-siglipL-224px-bf16 # BitVLA w/ BF16 SigLIP-L ``` Then run the following scripts to conduct evaluations: ```bash cd lmms-eval/ bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-bitsiglipL-224px-bf16 bash eval-dense-hf.sh /YOUR_PATH_TO_EXP/bitvla-siglipL-224px-bf16 ``` Note that we provide the master weights of BitVLA and perform online quantization. For actual memory savings, you may quantize the weights offline to 1.58-bit precision. We recommend using the [bitnet.cpp](https://github.com/microsoft/bitnet) inference framework to accurately measure the reduction in inference cost. ## Vision-Language-Action ### OFT Training #### 1. Preparing OFT We fine-tune BitVLA using OFT training shown in [OpenVLA-OFT](https://github.com/moojink/openvla-oft/tree/main). First setup the environment as required by that project. You can refer to [SETUP.md](https://github.com/moojink/openvla-oft/blob/main/SETUP.md) and [LIBERO.md](https://github.com/moojink/openvla-oft/blob/main/LIBERO.md) for detailed instructions. ``` conda create -n bitvla python=3.10 -y conda activate bitvla pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu124 # or use the provided docker # docker run --name nvidia_24_07 --privileged --net=host --ipc=host --gpus=all -v /mnt:/mnt -v /tmp:/tmp -d nvcr.io/nvidia/pytorch:24.07-py3 sleep infinity cd BitVLA pip install -e openvla-oft/ pip install -e transformers cd openvla-oft/ # install LIBERO git clone https://github.com/Lifelong-Robot-Learning/LIBERO.git pip install -e LIBERO/ # in BitVLA pip install -r experiments/robot/libero/libero_requirements.txt # install bitvla pip install -e bitvla/ ``` We adopt the same dataset as OpenVLA-OFT for the fine-tuning on LIBERO. You can download the dataset from [HuggingFace](https://huggingface.co/datasets/openvla/modified_libero_rlds). ``` git clone git@hf.co:datasets/openvla/modified_libero_rlds ``` #### 2. OFT fine-tuning First convert the [BitVLA](https://huggingface.co/hongyuw/bitvla-bitsiglipL-224px-bf16) to a format compatible with the VLA codebase. ``` python convert_ckpt.py /path/to/bitvla-bitsiglipL-224px-bf16 ``` After that, you can finetune the BitVLA using the following command. Here we take LIBERO spatial as an example: ``` torchrun --standalone --nnodes 1 --nproc-per-node 4 vla-scripts/finetune_bitnet.py \ --vla_path /path/to/bitvla-bitsiglipL-224px-bf16 \ --data_root_dir /path/to/modified_libero_rlds/ \ --dataset_name libero_spatial_no_noops \ --run_root_dir /path/to/save/your/ckpt \ --use_l1_regression True \ --warmup_steps 375 \ --use_lora False \ --num_images_in_input 2 \ --use_proprio True \ --batch_size 2 \ --grad_accumulation_steps 8 \ --learning_rate 1e-4 \ --max_steps 10001 \ --save_freq 10000 \ --save_latest_checkpoint_only False \ --image_aug True \ --run_id_note your_id ``` ### Evaluation on LIBERO You can download our fine-tuned BitVLA models from [HuggingFace](https://huggingface.co/collections/hongyuw/bitvla-68468fb1e3aae15dd8a4e36e). As an example for spatial set in LIBERO, run the following script for evaluation: ``` python experiments/robot/libero/run_libero_eval_bitnet.py \ --pretrained_checkpoint /path/to/ft-bitvla-bitsiglipL-224px-libero_spatial-bf16 \ --task_suite_name libero_spatial \ --info_in_path "information you want to show in path" \ --model_family "bitnet" ``` ## Acknowledgement This repository is built using [LMM-Eval](https://github.com/EvolvingLMMs-Lab/lmms-eval), [the HuggingFace's transformers](https://github.com/huggingface/transformers) and [OpenVLA-OFT](https://github.com/moojink/openvla-oft). ## Citation If you find this repository useful, please consider citing our work: ``` @article{bitvla, title={BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation}, author={Hongyu Wang and Chuyan Xiong and Ruiping Wang and Xilin Chen}, year={2025}, eprint={2506.07530}, archivePrefix={arXiv}, primaryClass={cs.RO}, } ``` ## License This project is licensed under the MIT License. ### Contact Information For help or issues using models, please submit a GitHub issue.