Update README.md
Browse files
README.md
CHANGED
|
@@ -1,74 +1,76 @@
|
|
| 1 |
-
---
|
| 2 |
-
library_name: hivex
|
| 3 |
-
original_train_name: AerialWildfireSuppression_difficulty_4_task_2_run_id_2_train
|
| 4 |
-
tags:
|
| 5 |
-
- hivex
|
| 6 |
-
- hivex-aerial-wildfire-suppression
|
| 7 |
-
- reinforcement-learning
|
| 8 |
-
- multi-agent-reinforcement-learning
|
| 9 |
-
model-index:
|
| 10 |
-
- name: hivex-AWS-PPO-baseline-task-2-difficulty-4
|
| 11 |
-
results:
|
| 12 |
-
- task:
|
| 13 |
-
type: sub-task
|
| 14 |
-
name: maximize_preparing_non_burning_trees
|
| 15 |
-
task-id: 2
|
| 16 |
-
difficulty-id: 4
|
| 17 |
-
dataset:
|
| 18 |
-
name: hivex-aerial-wildfire-suppression
|
| 19 |
-
type: hivex-aerial-wildfire-suppression
|
| 20 |
-
metrics:
|
| 21 |
-
- type: crash_count
|
| 22 |
-
value: 0.2666666738688946 +/- 0.21220094741551065
|
| 23 |
-
name: Crash Count
|
| 24 |
-
verified: true
|
| 25 |
-
- type: extinguishing_trees
|
| 26 |
-
value: 15.033333298563957 +/- 25.090456231376915
|
| 27 |
-
name: Extinguishing Trees
|
| 28 |
-
verified: true
|
| 29 |
-
- type: extinguishing_trees_reward
|
| 30 |
-
value: 75.16666680574417 +/- 125.45228120233335
|
| 31 |
-
name: Extinguishing Trees Reward
|
| 32 |
-
verified: true
|
| 33 |
-
- type: fire_out
|
| 34 |
-
value: 0.08333333507180214 +/- 0.19117978221378917
|
| 35 |
-
name: Fire Out
|
| 36 |
-
verified: true
|
| 37 |
-
- type: fire_too_close_to_city
|
| 38 |
-
value: 0.65 +/- 0.4006573545930159
|
| 39 |
-
name: Fire too Close to City
|
| 40 |
-
verified: true
|
| 41 |
-
- type: preparing_trees
|
| 42 |
-
value: 698.3916749000549 +/- 592.6497869663837
|
| 43 |
-
name: Preparing Trees
|
| 44 |
-
verified: true
|
| 45 |
-
- type: preparing_trees_reward
|
| 46 |
-
value: 3491.958309555054 +/- 2963.248872852455
|
| 47 |
-
name: Preparing Trees Reward
|
| 48 |
-
verified: true
|
| 49 |
-
- type: water_drop
|
| 50 |
-
value: 37.541666984558105 +/- 19.128060369297387
|
| 51 |
-
name: Water Drop
|
| 52 |
-
verified: true
|
| 53 |
-
- type: water_pickup
|
| 54 |
-
value: 37.23333339691162 +/- 18.986482878845344
|
| 55 |
-
name: Water Pickup
|
| 56 |
-
verified: true
|
| 57 |
-
- type: cumulative_reward
|
| 58 |
-
value: 3759.337190246582 +/- 2254.2074397931997
|
| 59 |
-
name: Cumulative Reward
|
| 60 |
-
verified: true
|
| 61 |
-
---
|
| 62 |
-
|
| 63 |
-
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
|
| 64 |
-
|
| 65 |
-
Environment: **Aerial Wildfire Suppression**<br>
|
| 66 |
-
Task: <code>2</code><br>
|
| 67 |
-
Difficulty: <code>4</code><br>
|
| 68 |
-
Algorithm: <code>PPO</code><br>
|
| 69 |
-
Episode Length: <code>3000</code><br>
|
| 70 |
-
Training <code>max_steps</code>: <code>1800000</code><br>
|
| 71 |
-
Testing <code>max_steps</code>: <code>180000</code><br><br>
|
| 72 |
-
|
| 73 |
-
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
|
| 74 |
-
Download the [Environment](https://github.com/hivex-research/hivex-environments)
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: hivex
|
| 3 |
+
original_train_name: AerialWildfireSuppression_difficulty_4_task_2_run_id_2_train
|
| 4 |
+
tags:
|
| 5 |
+
- hivex
|
| 6 |
+
- hivex-aerial-wildfire-suppression
|
| 7 |
+
- reinforcement-learning
|
| 8 |
+
- multi-agent-reinforcement-learning
|
| 9 |
+
model-index:
|
| 10 |
+
- name: hivex-AWS-PPO-baseline-task-2-difficulty-4
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
type: sub-task
|
| 14 |
+
name: maximize_preparing_non_burning_trees
|
| 15 |
+
task-id: 2
|
| 16 |
+
difficulty-id: 4
|
| 17 |
+
dataset:
|
| 18 |
+
name: hivex-aerial-wildfire-suppression
|
| 19 |
+
type: hivex-aerial-wildfire-suppression
|
| 20 |
+
metrics:
|
| 21 |
+
- type: crash_count
|
| 22 |
+
value: 0.2666666738688946 +/- 0.21220094741551065
|
| 23 |
+
name: Crash Count
|
| 24 |
+
verified: true
|
| 25 |
+
- type: extinguishing_trees
|
| 26 |
+
value: 15.033333298563957 +/- 25.090456231376915
|
| 27 |
+
name: Extinguishing Trees
|
| 28 |
+
verified: true
|
| 29 |
+
- type: extinguishing_trees_reward
|
| 30 |
+
value: 75.16666680574417 +/- 125.45228120233335
|
| 31 |
+
name: Extinguishing Trees Reward
|
| 32 |
+
verified: true
|
| 33 |
+
- type: fire_out
|
| 34 |
+
value: 0.08333333507180214 +/- 0.19117978221378917
|
| 35 |
+
name: Fire Out
|
| 36 |
+
verified: true
|
| 37 |
+
- type: fire_too_close_to_city
|
| 38 |
+
value: 0.65 +/- 0.4006573545930159
|
| 39 |
+
name: Fire too Close to City
|
| 40 |
+
verified: true
|
| 41 |
+
- type: preparing_trees
|
| 42 |
+
value: 698.3916749000549 +/- 592.6497869663837
|
| 43 |
+
name: Preparing Trees
|
| 44 |
+
verified: true
|
| 45 |
+
- type: preparing_trees_reward
|
| 46 |
+
value: 3491.958309555054 +/- 2963.248872852455
|
| 47 |
+
name: Preparing Trees Reward
|
| 48 |
+
verified: true
|
| 49 |
+
- type: water_drop
|
| 50 |
+
value: 37.541666984558105 +/- 19.128060369297387
|
| 51 |
+
name: Water Drop
|
| 52 |
+
verified: true
|
| 53 |
+
- type: water_pickup
|
| 54 |
+
value: 37.23333339691162 +/- 18.986482878845344
|
| 55 |
+
name: Water Pickup
|
| 56 |
+
verified: true
|
| 57 |
+
- type: cumulative_reward
|
| 58 |
+
value: 3759.337190246582 +/- 2254.2074397931997
|
| 59 |
+
name: Cumulative Reward
|
| 60 |
+
verified: true
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
|
| 64 |
+
|
| 65 |
+
Environment: **Aerial Wildfire Suppression**<br>
|
| 66 |
+
Task: <code>2</code><br>
|
| 67 |
+
Difficulty: <code>4</code><br>
|
| 68 |
+
Algorithm: <code>PPO</code><br>
|
| 69 |
+
Episode Length: <code>3000</code><br>
|
| 70 |
+
Training <code>max_steps</code>: <code>1800000</code><br>
|
| 71 |
+
Testing <code>max_steps</code>: <code>180000</code><br><br>
|
| 72 |
+
|
| 73 |
+
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
|
| 74 |
+
Download the [Environment](https://github.com/hivex-research/hivex-environments)
|
| 75 |
+
|
| 76 |
+
[hivex-paper]: https://arxiv.org/abs/2501.04180
|