haznitrama's picture
Add main weights for eng
23b3b53 verified
# Original training architecture (verbatim)
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import _softmax_backward_data as _softmax_backward_data
class Bert(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.embedding = Embedding(config)
self.transformer = Encoder(config, activation_checkpointing)
self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight)
def get_contextualized(self, input_ids, attention_mask):
static_embeddings, relative_embedding = self.embedding(input_ids)
contextualized_embeddings = self.transformer(static_embeddings, attention_mask.unsqueeze(1), relative_embedding)
return contextualized_embeddings
def forward(self, input_ids, attention_mask, masked_lm_labels, num_masked=None, ratio=None):
contextualized_embeddings = self.get_contextualized(input_ids, attention_mask)
if num_masked is None:
subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
gold_labels = masked_lm_labels.flatten()
gold_labels = gold_labels[gold_labels != -100]
loss = F.cross_entropy(subword_prediction, gold_labels, reduction="none").mean()
z_loss = torch.logsumexp(subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
accuracy = (subword_prediction.argmax(-1) == gold_labels).float().mean()
num_tokens = gold_labels.size(0)
return loss, accuracy, z_loss, num_tokens
else:
masked_subword_prediction, causal_subword_prediction = self.classifier(contextualized_embeddings, masked_lm_labels, num_masked)
if masked_subword_prediction is not None:
masked_gold_labels = masked_lm_labels[:, :num_masked].flatten()
masked_gold_labels = masked_gold_labels[masked_gold_labels != -100]
masked_loss = F.cross_entropy(masked_subword_prediction, masked_gold_labels)
masked_z_loss = torch.logsumexp(masked_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
masked_accuracy = (masked_subword_prediction.argmax(-1) == masked_gold_labels).float().mean()
num_masked_tokens = masked_gold_labels.size(0)
else:
masked_loss = 0.0
masked_z_loss = 0.0
masked_accuracy = 0.0
num_masked_tokens = 0
if causal_subword_prediction is not None:
causal_gold_labels = masked_lm_labels[:, num_masked:].flatten()
causal_gold_labels = causal_gold_labels[causal_gold_labels != -100]
causal_loss = F.cross_entropy(causal_subword_prediction, causal_gold_labels)
causal_z_loss = torch.logsumexp(causal_subword_prediction, dim=-1).pow(2).mean()
with torch.no_grad():
causal_accuracy = (causal_subword_prediction.argmax(-1) == causal_gold_labels).float().mean()
num_causal_tokens = causal_gold_labels.size(0)
else:
causal_loss = 0.0
causal_z_loss = 0.0
causal_accuracy = 0.0
num_causal_tokens = 0
loss = ratio * masked_loss + (1 - ratio) * causal_loss
z_loss = ratio * masked_z_loss + (1 - ratio) * causal_z_loss
with torch.no_grad():
accuracy = ratio * masked_accuracy + (1 - ratio) * causal_accuracy
num_tokens = num_masked_tokens + num_causal_tokens
return loss, masked_loss, causal_loss, accuracy, masked_accuracy, causal_accuracy, z_loss, num_tokens
# From https://github.com/epfml/DenseFormer
class InPlaceSetSlice(torch.autograd.Function):
@staticmethod
def forward(ctx, full_tensor, last_slice, x_idx, x_val):
full_tensor[x_idx] = x_val
ctx.x_idx = x_idx
ret = torch.Tensor().to(full_tensor.device)
ret.set_(full_tensor[:x_idx + 1])
return ret
@staticmethod
def backward(ctx, grad_out):
if ctx.x_idx == 0:
return None, None, None, grad_out[ctx.x_idx]
else:
return None, grad_out[:ctx.x_idx], None, grad_out[ctx.x_idx]
def apply_inplace_set(x_acc, x_idx, x_val):
full_tensor, last_slice = x_acc
new_slice = InPlaceSetSlice.apply(full_tensor, last_slice, x_idx, x_val)
return full_tensor, new_slice
class DWAModules(torch.nn.Module):
def __init__(self, hidden_size, n_blocks):
super().__init__()
self.n_blocks = n_blocks
self.alphas = nn.ParameterList([nn.Parameter(torch.zeros(i + 2)) for i in range(n_blocks)])
self.accumulator = None
self._init_weights()
def _init_weights(self):
for module in self.alphas:
module.data.zero_()
module.data[-1] = 1.0
def init_accumulator(self, x):
self.accumulator = (torch.zeros((self.n_blocks + 1, *x.shape), device=x.device, dtype=x.dtype), None)
self.accumulator = apply_inplace_set(self.accumulator, 0, x)
def forward(self, x, block_idx):
assert self.accumulator is not None, "`init_accumulator(x)` needs to be called first"
self.accumulator = apply_inplace_set(
self.accumulator,
block_idx + 1,
x
)
x = torch.tensordot(self.alphas[block_idx], self.accumulator[1], dims=1)
return x
class Encoder(nn.Module):
def __init__(self, config, activation_checkpointing=False):
super().__init__()
self.attention_layers = nn.ModuleList([Attention(config) for _ in range(config.num_hidden_layers)])
self.mlp_layers = nn.ModuleList([FeedForward(config) for _ in range(config.num_hidden_layers)])
self.dwa_modules = DWAModules(config.hidden_size, config.num_hidden_layers * 2)
for i, layer in enumerate(self.mlp_layers):
layer.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
layer.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
self.activation_checkpointing = activation_checkpointing
def forward(self, x, attention_mask, relative_embedding):
self.dwa_modules.init_accumulator(x)
for i, (attention_layer, mlp_layer) in enumerate(zip(self.attention_layers, self.mlp_layers)):
x = x + attention_layer(x, attention_mask, relative_embedding)
x = self.dwa_modules(x, block_idx=i * 2)
x = x + mlp_layer(x)
x = self.dwa_modules(x, block_idx=i * 2 + 1)
return x
class MaskClassifier(nn.Module):
def __init__(self, config, subword_embedding):
super().__init__()
self.nonlinearity = nn.Sequential(
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, config.hidden_size),
nn.GELU(),
nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
nn.Dropout(config.hidden_dropout_prob),
nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
)
self.initialize(config.hidden_size, subword_embedding)
def initialize(self, hidden_size, embedding):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.nonlinearity[-1].weight = embedding
self.nonlinearity[1].bias.data.zero_()
self.nonlinearity[-1].bias.data.zero_()
def forward(self, x, masked_lm_labels, num_masked=None):
if num_masked is None:
x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
x = self.nonlinearity(x)
return x
else:
masked_x, causal_x = torch.tensor_split(x, (num_masked,), dim=1)
mntp_masked_lm_labels, causal_masked_lm_labels = torch.tensor_split(masked_lm_labels, (num_masked,), dim=1)
if masked_x.size(1) != 0:
masked_x = torch.index_select(masked_x.flatten(0, 1), 0, torch.nonzero(mntp_masked_lm_labels.flatten() != -100).squeeze())
masked_x = self.nonlinearity(masked_x)
else:
masked_x = None
if causal_x.size(1) != 0:
causal_x = torch.index_select(causal_x.flatten(0, 1), 0, torch.nonzero(causal_masked_lm_labels.flatten() != -100).squeeze())
causal_x = self.nonlinearity(causal_x)
else:
causal_x = None
return masked_x, causal_x
class GeGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
x = x * F.gelu(gate, approximate='tanh')
return x
class FeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
GeGLU(),
nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
nn.Dropout(config.hidden_dropout_prob)
)
self.initialize(config.hidden_size)
def initialize(self, hidden_size):
std = math.sqrt(2.0 / (5.0 * hidden_size))
nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, x):
return self.mlp(x)
class MaskedSoftmax(torch.autograd.Function):
@staticmethod
def forward(self, x, mask, dim):
self.dim = dim
x.masked_fill_(mask, float('-inf'))
x = torch.softmax(x, self.dim)
x.masked_fill_(mask, 0.0)
self.save_for_backward(x)
return x
@staticmethod
def backward(self, grad_output):
output, = self.saved_tensors
inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
return inputGrad, None, None
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_size = config.hidden_size // config.num_attention_heads
self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.in_proj_vg = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
- torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
position_indices = config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices, persistent=True)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.scale = 1.0 / math.sqrt(3 * self.head_size)
self.initialize()
def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
return bucket_pos
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.in_proj_vg.weight, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
self.in_proj_qk.bias.data.zero_()
self.in_proj_vg.bias.data.zero_()
self.out_proj.bias.data.zero_()
def forward(self, hidden_states, attention_mask, relative_embedding):
key_len, batch_size, _ = hidden_states.size()
query_len = key_len
if self.position_indices.size(0) < query_len:
position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
- torch.arange(query_len, dtype=torch.long).unsqueeze(0)
position_indices = self.make_log_bucket_position(position_indices, self.config.position_bucket_size, 512)
position_indices = self.config.position_bucket_size - 1 + position_indices
self.register_buffer("position_indices", position_indices.to(hidden_states.device), persistent=True)
hidden_states = self.pre_layer_norm(hidden_states)
query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
value, gate = self.in_proj_vg(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
gate = F.gelu(gate)
pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
pos = F.embedding(self.position_indices[:query_len, :key_len], pos) # shape: [T, T, 2D]
query_pos, key_pos = pos.chunk(2, dim=-1)
query_pos = query_pos.view(query_len, key_len, self.num_heads, self.head_size)
key_pos = key_pos.view(query_len, key_len, self.num_heads, self.head_size)
query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
value = value.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
attention_scores = torch.bmm(query, key.transpose(1, 2) * self.scale)
query = query.view(batch_size, self.num_heads, query_len, self.head_size)
key = key.view(batch_size, self.num_heads, query_len, self.head_size)
attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
attention_scores.add_(torch.einsum("bhqd,qkhd->bhqk", query, key_pos * self.scale))
attention_scores.add_(torch.einsum("bhkd,qkhd->bhqk", key * self.scale, query_pos))
attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
context = context * gate
context = self.post_layer_norm(context)
context = self.out_proj(context)
context = self.dropout(context)
return context
class Embedding(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.initialize()
def initialize(self):
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
def forward(self, input_ids):
word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
relative_embeddings = self.relative_layer_norm(self.relative_embedding)
return word_embedding, relative_embeddings
# HF wrappers that preserve state dict keys and behavior
from transformers import PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput, CausalLMOutputWithCrossAttentions
from .configuration_gpt_bert import GPTBertConfig
import torch
import torch.nn as nn
class GPTBertForMaskedLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
def tie_weights(self):
try:
self.model.classifier.nonlinearity[-1].weight = self.model.embedding.word_embedding.weight
except Exception:
pass
return super().tie_weights()
def forward(self, input_ids, attention_mask=None, labels=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
mask_bool = (attention_mask == 0).unsqueeze(1).unsqueeze(1)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_bool, relative_embedding)
hs = contextualized.transpose(0, 1)
B,S,H = hs.shape
flat = hs.reshape(B*S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(logits.view(-1, vocab), labels.view(-1))
return MaskedLMOutput(loss=loss, logits=logits)
class GPTBertForCausalLM(PreTrainedModel):
config_class = GPTBertConfig
base_model_prefix = 'gpt_bert'
def __init__(self, config: GPTBertConfig):
super().__init__(config)
self.model = Bert(config)
def prepare_inputs_for_generation(self, input_ids, **kwargs):
return {'input_ids': input_ids, 'attention_mask': kwargs.get('attention_mask', None)}
def forward(self, input_ids, attention_mask=None, labels=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
mask_bool = (attention_mask == 0).unsqueeze(1).unsqueeze(1)
static_embeddings, relative_embedding = self.model.embedding(input_ids)
if static_embeddings.dim() == 3 and static_embeddings.shape[0] == input_ids.shape[0]:
static_embeddings = static_embeddings.transpose(0, 1)
contextualized = self.model.transformer(static_embeddings, mask_bool, relative_embedding)
hs = contextualized.transpose(0, 1)
B,S,H = hs.shape
flat = hs.reshape(B*S, H)
logits_flat = self.model.classifier.nonlinearity(flat)
vocab = logits_flat.size(-1)
logits = logits_flat.view(B, S, vocab)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return CausalLMOutputWithCrossAttentions(loss=loss, logits=logits)