Commit
·
fca1a82
1
Parent(s):
3fd5fe6
Update Readme
Browse files
README.md
CHANGED
|
@@ -1,2 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
See this documents https://qiita.com/mkt3/items/4d0ae36f3f212aee8002
|
| 2 |
published by https://github.com/mkt3
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- ja
|
| 4 |
+
thumbnail:
|
| 5 |
+
tags:
|
| 6 |
+
- xlnet
|
| 7 |
+
- lm-head
|
| 8 |
+
- causal-lm
|
| 9 |
+
license:
|
| 10 |
+
datasets:
|
| 11 |
+
metrics:
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# XLNet-japanese
|
| 15 |
+
|
| 16 |
+
## Model description
|
| 17 |
+
This model require Mecab and senetencepiece with XLNetTokenizer.
|
| 18 |
+
See details https://qiita.com/mkt3/items/4d0ae36f3f212aee8002
|
| 19 |
+
|
| 20 |
+
## Intended uses & limitations
|
| 21 |
+
|
| 22 |
+
#### How to use
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
import MeCab
|
| 26 |
+
import subprocess
|
| 27 |
+
|
| 28 |
+
from transformers import (
|
| 29 |
+
pipeline,
|
| 30 |
+
XLNetLMHeadModel,
|
| 31 |
+
XLNetTokenizer
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
class XLNet():
|
| 35 |
+
def __init__(self):
|
| 36 |
+
cmd = 'echo `mecab-config --dicdir`"/mecab-ipadic-neologd"'
|
| 37 |
+
path = (subprocess.Popen(cmd, stdout=subprocess.PIPE,
|
| 38 |
+
shell=True).communicate()[0]).decode('utf-8')
|
| 39 |
+
self.m = MeCab.Tagger(f"-Owakati -d {path}")
|
| 40 |
+
|
| 41 |
+
self.gen_model = XLNetLMHeadModel.from_pretrained("hajime9652/xlnet-japanese")
|
| 42 |
+
self.gen_tokenizer = XLNetTokenizer.from_pretrained("hajime9652/xlnet-japanese")
|
| 43 |
+
|
| 44 |
+
def generate(self, prompt="福岡のご飯は美味しい。コンパクトで暮らしやすい街。"):
|
| 45 |
+
prompt = self.m.parse(prompt)
|
| 46 |
+
inputs = self.gen_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
| 47 |
+
prompt_length = len(self.gen_tokenizer.decode(inputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
|
| 48 |
+
outputs = self.gen_model.generate(inputs, max_length=200, do_sample=True, top_p=0.95, top_k=60)
|
| 49 |
+
generated = prompt + self.gen_tokenizer.decode(outputs[0])[prompt_length:]
|
| 50 |
+
return generated
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
#### Limitations and bias
|
| 54 |
+
|
| 55 |
+
## Training data
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
## Training procedure
|
| 59 |
+
|
| 60 |
+
## Eval results
|
| 61 |
+
|
| 62 |
+
###
|
| 63 |
See this documents https://qiita.com/mkt3/items/4d0ae36f3f212aee8002
|
| 64 |
published by https://github.com/mkt3
|