--- license: mit datasets: - gustavokuklinski/aeon - gustavokuklinski/aeon-books language: - en base_model: - gustavokuklinski/aeon-360m tags: - llama.cpp --- ![alt text](https://raw.githubusercontent.com/gustavokuklinski/aeon.ai/refs/heads/main/docs/assets/img/aeon-logo.png) # AEON AEON is portable, private, and capable of operating fully offline. It democratizes access to powerful, dynamic AI capabilities for a wider audience, regardless of their hardware. The finetuned model was build to be like a "friend" for RAG personal files and work with insights. #### Docs - **Page** [aeon.ai](https://gustavokuklinski.github.io/aeon.ai) - **Github Project:** [AEON.ai](https://github.com/gustavokuklinski/aeon.ai/) - **Github LLM Finetune Scripts:** [AEON.llm](https://github.com/gustavokuklinski/aeon.llm/) # Using Aeon AEON uses Python with virtual environment and `git lfs` installed. ```shell /$ git lfs install # With plugins /$ git clone --recurse-submodules https://github.com/gustavokuklinski/aeon.ai.git # Without plugins /$ git clone https://github.com/gustavokuklinski/aeon.ai.git ``` ```shell # Create .venv /$ python -m venv .venv # Start virtual env /$ source .venv/bin/activate # Run check and install dependencies /$ python3 scripts/install.py # Start AEON /$ python3 aeon.py ``` ### Using Docker ```bash docker build -t aeon . docker run -it --rm -p 7860:7860 -v "$(pwd):/app" aeon ``` ### Finetune ![Aeon chart Loss](https://huggingface.co/api/resolve-cache/models/gustavokuklinski/aeon-360m/e5a3e273c5dfb3b279f5393322f1745b4f3aaa3d/output%2Ftraining_metrics_finetune.png?%2Fgustavokuklinski%2Faeon-360m%2Fresolve%2Fmain%2Foutput%2Ftraining_metrics_finetune.png=&etag=%22b368e3ed02494f2d3462900ef67fb5fa237e703f-inline%22) ### Tested on | OS | CPU | GPU | RAM | |:---|:---|:---|:---| | Ubuntu 24.04.2 LTS | Intel i7-10510U | Intel CometLake-U GT2 | 16GB | | Windows 11 Home Edition | Intel i7-10510U | Intel CometLake-U GT2 | 8GB | ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo gustavokuklinski/aeon-GGUF --hf-file aeon-360M.Q8_0.gguf -p "What is a virtual species?" ``` ### Server: ```bash llama-server --hf-repo gustavokuklinski/aeon-GGUF --hf-file aeon-360M.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo gustavokuklinski/aeon-GGUF --hf-file aeon-360M.Q8_0.gguf -p "What is a virtual species?" ``` or ``` ./llama-server --hf-repo gustavokuklinski/aeon-GGUF --hf-file aeon-360M.Q8_0.gguf -c 2048 ```