File size: 9,188 Bytes
e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd 1742937 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd 1742937 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd e436321 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd e436321 c21d3dd 1742937 c21d3dd 1742937 c21d3dd e436321 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd e436321 c21d3dd e436321 c21d3dd e436321 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 e436321 1742937 c21d3dd 1742937 e436321 1742937 e436321 c21d3dd 1742937 e436321 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd 1742937 c21d3dd e436321 c21d3dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
base_model: Qwen/Qwen3-4B
library_name: peft
tags:
- base_model:adapter:Qwen/Qwen3-4B
- lora
- transformers
- text-classification
- moderation
- star-trek
---
# Model Card for geoffmunn/Qwen3Guard-StarTrek-Classification-4B
This is a fine-tuned version of **Qwen3-4B** using LoRA (Low-Rank Adaptation) to classify whether user-provided text is related to *Star Trek* or not. The model acts as a domain-specific content classifier, returning one of two labels: `"related"` or `"not_related"`. It was developed as part of the Qwen3Guard demonstration project to showcase how large language models can be adapted for custom classification tasks.
## Model Details
### Model Description
This model is a binary sequence classifier fine-tuned on a synthetic dataset of Star Trek-related questions and general non-Star-Trek text. Built atop the Qwen3-4B foundation model, it uses parameter-efficient fine-tuning via LoRA to adapt the model for topic detection in conversational or input text. It is designed for use in moderation systems where filtering based on pop culture topics like *Star Trek* is desired.
- **Developed by:** Geoff Munn ([@geoffmunn](https://github.com/geoffmunn))
- **Shared by:** Geoff Munn
- **Model type:** Causal language model with LoRA adapter for sequence classification
- **Language(s) (NLP):** English
- **License:** MIT License (see [GitHub repo](https://github.com/geoffmunn/Qwen3Guard))
- **Finetuned from model:** Qwen/Qwen3-4B
### Model Sources
- **Repository:** [https://github.com/geoffmunn/Qwen3Guard](https://github.com/geoffmunn/Qwen3Guard)
- **Demo:** Interactive demo available via `star_trek_chat.html` in the repository; requires local API server
## Uses
### Direct Use
The model can directly classify whether a given piece of text is related to *Star Trek*. Example applications include:
- Filtering fan forum posts
- Moderating trivia chatbots
- Enhancing themed AI assistants
- Educational tools focused on science fiction media
Input: A string of text
Output: One of two labels β `"related"` or `"not_related"`
### Downstream Use
This model can be integrated into larger systems such as:
- Themed conversational agents (e.g., a *Star Trek*-focused chatbot)
- Content recommendation engines that route queries based on topic relevance
- Fine-tuning starter for other sci-fi franchises (e.g., *Star Wars*, *Doctor Who*) using similar methodology
### Out-of-Scope Use
This model should **not** be used for:
- General content moderation (toxicity, hate speech, etc.)
- Medical, legal, or safety-critical decision-making
- Multilingual classification (trained only on English)
- Detecting nuanced sentiment or emotion
- Classifying topics outside entertainment/pop culture without retraining
It may produce inaccurate classifications when presented with ambiguous references, parody content, or highly technical scientific discussions unrelated to *Star Trek* lore.
## Bias, Risks, and Limitations
The training data consists entirely of synthetically generated questions about *Star Trek*, which introduces several limitations:
- Potential overfitting to question formats rather than natural language statements
- Limited coverage of obscure characters, episodes, or expanded universe material
- No representation of non-English *Star Trek* content
- Biases toward canonical series (TOS, TNG, DS9, etc.) over newer entries
Additionally, because the dataset was auto-generated using prompts, there may be inconsistencies in labeling or artificial phrasing patterns.
### Recommendations
Users should validate performance on real-world data before deployment. For production use, consider augmenting the dataset with human-labeled examples and testing across diverse inputs. Always pair this model with broader safeguards if used in public-facing applications.
## How to Get Started with the Model
You can load and run inference using Hugging Face Transformers:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_id = "geoffmunn/Qwen3Guard-StarTrek-Classification-4B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)
input_text = "What is the warp core made of in Star Trek?"
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(f"Label: {label}")
```
Ensure you have the required libraries installed:
```bash
pip install transformers torch peft
```
## Training Details
### Training Data
The model was trained on a synthetic JSONL dataset containing 2,500 labeled examples of Star Trek-related questions marked as `"related"`, and an equal number of randomly sampled general knowledge questions labeled `"not_related"`. The dataset was generated using the script `generate_star_trek_questions.py` from the repository.
Dataset format:
```json
{"input": "What planet is Spock from?", "label": "related"}
{"input": "Who wrote 'Pride and Prejudice'?", "label": "not_related"}
```
Place your dataset at: `finetuning/star_trek/star_trek_guard_dataset.jsonl`
### Training Procedure
#### Preprocessing
Text inputs were tokenized using the Qwen3 tokenizer with a maximum sequence length of 512 tokens. Inputs longer than this were truncated. Labels were mapped via:
```python
label2id = {"not_related": 0, "related": 1}
id2label = {0: "not_related", 1: "related"}
```
### Training Hyperparameters
- **Training regime:** Mixed precision training (fp16), enabled via Hugging Face Accelerate
- **Batch size:** 2 (per GPU)
- **Gradient accumulation steps:** 16 β effective batch size: 32
- **Number of epochs:** 3
- **Learning rate:** 2e-4
- **Optimizer:** AdamW
- **Max sequence length:** 512
- **LoRA configuration:**
- **Rank (r):** 16
- **Alpha:** 32
- **Dropout:** 0.05
- **Target modules:** attention query/value layers and MLP up/down projections
### Speeds, Sizes, Times
- **Hardware used:** NVIDIA GPU (assumed: A100 or equivalent)
- **Training time:** ~2β3 hours depending on hardware
- **Checkpoint size:** ~3.8 GB (adapter weights only, PEFT format)
- **Inference memory:** < 10 GB VRAM (with quantization further reduction possible)
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
A 10% holdout test set (~500 samples) was used for evaluation, split from the full dataset during training.
#### Factors
Evaluation focused on accuracy across:
- Canonical vs. obscure Star Trek references
- Question vs. statement format
- Length of input text
#### Metrics
- **Accuracy:** Primary metric
- **Precision, Recall, F1-score:** Per-class metrics reported during training
- **Confusion Matrix:** Generated internally during test phase
## Results
During final evaluation, the model achieved:
- **Accuracy:** ~96β98% (on synthetic test set)
- Strong precision/recall for "related" class
- Minor false positives on space/science topics unrelated to Star Trek
## Summary
The model performs well on its intended task within the scope of the training distribution but may degrade on edge cases or metaphorical references.
## Technical Specifications
### Model Architecture and Objective
- **Base architecture:** Qwen3-4B (causal decoder-only LLM)
- **Adaptation method:** LoRA (PEFT)
- **Task head:** Sequence classification (single-label)
- **Objective function:** Cross-entropy loss
### Compute Infrastructure
#### Hardware
GPU: NVIDIA A100 / RTX 3090 / L40S or equivalent
RAM: β₯ 32 GB system memory recommended
#### Software
- Python 3.10+
- PyTorch 2.4+ with CUDA 12.1+
- Transformers 4.40+
- PEFT 0.18.0
- Accelerate, Datasets, Tokenizers
## Citation
While no formal paper exists, please cite the GitHub repository if used academically.
BibTeX:
```bibtex
@software{munn_qwen3guard_2025,
author = {Munn, Geoff},
title = {Qwen3Guard: Demonstration of Qwen3Guard Models for Content Classification},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
url = {https://github.com/geoffmunn/Qwen3Guard}
}
```
### APA:
Munn, G. (2025). Qwen3Guard: Demonstration of Qwen3Guard Models for Content Classification [Software]. GitHub. https://github.com/geoffmunn/Qwen3Guard
## Glossary
- **LoRA (Low-Rank Adaptation):** A parameter-efficient fine-tuning technique that adds trainable low-rank matrices to pretrained weights.
- **PEFT:** Parameter-Efficient Fine-Tuning, a Hugging Face library for lightweight adaptation of large models.
- **GGUF:** Format used for running models in llama.cpp; not supported for streaming variant here.
- **JSONL:** JSON Lines format β one JSON object per line.
## More Information
For more details, including API server setup and web demos, visit:
π https://github.com/geoffmunn/Qwen3Guard
Includes:
- Ollama-compatible scripts
- Flask-based API server (api_server.py)
- HTML chat interface (star_trek_chat.html)
- Dataset generation tools
## Model Card Authors
Geoff Munn β Developer and maintainer
## Model Card Contact
For questions or feedback, contact the author via GitHub:
@geoffmunn
|