File size: 5,132 Bytes
47c0d59 7880ae3 dc4074b 7880ae3 fb02b23 47c0d59 7880ae3 04912b7 7880ae3 47c0d59 fb02b23 47c0d59 7880ae3 47c0d59 7880ae3 47c0d59 7880ae3 b9145de fd146d7 b9145de 47c0d59 b9145de 64f2201 b9145de fb02b23 b9145de 47c0d59 b9145de fb02b23 b9145de 47c0d59 b9145de 47c0d59 7880ae3 47c0d59 7880ae3 47c0d59 7880ae3 47c0d59 7880ae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: apache-2.0
tags:
- gguf
- qwen
- qwen3
- qwen3-0.6b
- qwen3-0.6b-gguf
- llama.cpp
- quantized
- text-generation
- chat
- edge-ai
- tiny-model
- imatrix
base_model: Qwen/Qwen3-0.6B
author: geoffmunn
pipeline_tag: text-generation
language:
- en
- zh
---
# Qwen3-0.6B-f16-GGUF
This is a **GGUF-quantized version** of the **[Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)** language model β a compact **600-million-parameter** LLM designed for **ultra-fast inference on low-resource devices**.
Converted for use with `llama.cpp`, [LM Studio](https://lmstudio.ai), [OpenWebUI](https://openwebui.com), and [GPT4All](https://gpt4all.io), enabling private AI anywhere β even offline.
> β οΈ **Note**: This is a *very small* model. It will not match larger models (e.g., 4B+) in reasoning, coding, or factual accuracy. However, it shines in **speed, portability, and efficiency**.
## Available Quantizations (from f16)
These variants were built from a **f16** base model to ensure consistency across quant levels.
| Level | Speed | Size | Recommendation |
|-----------|-----------|------------|--------------------------------------------------------------------|
| Q2_K | β‘ Fastest | 347 MB | π¨ **DO NOT USE.** Could not provide an answer to any question. |
| Q3_K_S | β‘ Fast | 390 MB | Not recommended, did not appear in any top 3 results. |
| Q3_K_M | β‘ Fast | 414 MB | First place in the bat & ball question, no other top 3 appearances.|
| Q4_K_S | π Fast | 471 MB | A good option for technical, low-temperature questions. |
| Q4_K_M | π Fast | 484 MB | Showed up in a few results, but not recommended. |
| π₯ Q5_K_S | π’ Medium | 544 MB | π₯ A very close second place. Good for all query types. |
| π₯ Q5_K_M | π’ Medium | 551 MB | π₯ **Best overall model.** Highly recommended for all query types. |
| Q6_K | π Slow | 623 MB | Showed up in a few results, but not recommended. |
| π₯ Q8_0 | π Slow | 805 MB | π₯ Very good for non-technical, creative-style questions. |
## Why Use a 0.6B Model?
While limited in capability compared to larger models, **Qwen3-0.6B** excels at:
- Running **instantly** on CPUs without GPU
- Fitting into **<2GB RAM**, even when quantized
- Enabling **offline AI on microcontrollers, phones, or edge devices**
- Serving as a **fast baseline** for lightweight NLP tasks (intent detection, short responses)
Itβs ideal for:
- Chatbots with simple flows
- On-device assistants
- Educational demos
- Rapid prototyping
## Model anaysis and rankings
I have run each of these models across 6 questions, and ranked them all based on the quality of the anwsers.
**Qwen3-0.6B-f16:Q5_K_M** is the best model across all question types, but if you want to play it safe with a higher precision model, then you could consider using **Qwen3-0.6B-f16:Q8_0**.
You can read the results here: [Qwen3-0.6b-f16-analysis.md](Qwen3-0.6b-f16-analysis.md)
If you find this useful, please give the project a β€οΈ like.
## Usage
Load this model using:
- [OpenWebUI](https://openwebui.com) β self-hosted AI interface with RAG & tools
- [LM Studio](https://lmstudio.ai) β desktop app with GPU support and chat templates
- [GPT4All](https://gpt4all.io) β private, local AI chatbot (offline-first)
- Or directly via `llama.cpp`
Each quantized model includes its own `README.md` and shares a common `MODELFILE` for optimal configuration.
Importing directly into Ollama should work, but you might encounter this error: `Error: invalid character '<' looking for beginning of value`.
In this case try these steps:
1. `wget https://huggingface.co/geoffmunn/Qwen3-0.6B-f16/resolve/main/Qwen3-0.6B-f16%3AQ3_K_M.gguf` (replace the quantised version with the one you want)
2. `nano Modelfile` and enter these details (again, replacing Q3_K_M with the version you want):
```text
FROM ./Qwen3-0.6B-f16:Q3_K_M.gguf
# Chat template using ChatML (used by Qwen)
SYSTEM You are a helpful assistant
TEMPLATE "{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>
# Default sampling
PARAMETER temperature 0.6
PARAMETER top_p 0.95
PARAMETER top_k 20
PARAMETER min_p 0.0
PARAMETER repeat_penalty 1.1
PARAMETER num_ctx 4096
```
The `num_ctx` value has been dropped to increase speed significantly.
3. Then run this command: `ollama create Qwen3-0.6B-f16:Q3_K_M -f Modelfile`
You will now see "Qwen3-0.6B-f16:Q3_K_M" in your Ollama model list.
These import steps are also useful if you want to customise the default parameters or system prompt.
## Author
π€ Geoff Munn (@geoffmunn)
π [Hugging Face Profile](https://huggingface.co/geoffmunn)
## Disclaimer
This is a community conversion for local inference. Not affiliated with Alibaba Cloud or the Qwen team.
|