File size: 5,132 Bytes
47c0d59
 
 
7880ae3
 
dc4074b
 
 
7880ae3
 
 
 
 
 
fb02b23
47c0d59
 
7880ae3
04912b7
7880ae3
 
47c0d59
 
fb02b23
47c0d59
7880ae3
47c0d59
7880ae3
47c0d59
 
 
 
 
7880ae3
 
b9145de
 
fd146d7
b9145de
 
 
 
 
 
 
 
47c0d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9145de
 
 
64f2201
b9145de
fb02b23
b9145de
 
 
47c0d59
 
 
b9145de
 
 
 
 
 
 
 
 
 
fb02b23
b9145de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c0d59
b9145de
47c0d59
7880ae3
47c0d59
7880ae3
 
47c0d59
7880ae3
47c0d59
7880ae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
tags:
  - gguf
  - qwen
  - qwen3
  - qwen3-0.6b
  - qwen3-0.6b-gguf
  - llama.cpp
  - quantized
  - text-generation
  - chat
  - edge-ai
  - tiny-model
  - imatrix
base_model: Qwen/Qwen3-0.6B
author: geoffmunn
pipeline_tag: text-generation
language:
  - en
  - zh
---

# Qwen3-0.6B-f16-GGUF

This is a **GGUF-quantized version** of the **[Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)** language model β€” a compact **600-million-parameter** LLM designed for **ultra-fast inference on low-resource devices**.

Converted for use with `llama.cpp`, [LM Studio](https://lmstudio.ai), [OpenWebUI](https://openwebui.com), and [GPT4All](https://gpt4all.io), enabling private AI anywhere β€” even offline.

> ⚠️ **Note**: This is a *very small* model. It will not match larger models (e.g., 4B+) in reasoning, coding, or factual accuracy. However, it shines in **speed, portability, and efficiency**.

## Available Quantizations (from f16)

These variants were built from a **f16** base model to ensure consistency across quant levels.

| Level     | Speed     | Size       | Recommendation                                                     |
|-----------|-----------|------------|--------------------------------------------------------------------|
| Q2_K      | ⚑ Fastest | 347 MB     | 🚨 **DO NOT USE.** Could not provide an answer to any question.       |
| Q3_K_S    | ⚑ Fast    | 390 MB     | Not recommended, did not appear in any top 3 results.              |
| Q3_K_M    | ⚑ Fast    | 414 MB     | First place in the bat & ball question, no other top 3 appearances.|
| Q4_K_S    | πŸš€ Fast   | 471 MB     | A good option for technical, low-temperature questions.            |
| Q4_K_M    | πŸš€ Fast   | 484 MB     | Showed up in a few results, but not recommended.                   |
| πŸ₯ˆ Q5_K_S | 🐒 Medium | 544 MB     | πŸ₯ˆ A very close second place. Good for all query types.             |
| πŸ₯‡ Q5_K_M | 🐒 Medium | 551 MB     | πŸ₯‡ **Best overall model.** Highly recommended for all query types.  |
| Q6_K      | 🐌 Slow   | 623 MB     | Showed up in a few results, but not recommended.                   |
| πŸ₯‰ Q8_0   | 🐌 Slow   | 805 MB     | πŸ₯‰ Very good for non-technical, creative-style questions.           |

## Why Use a 0.6B Model?

While limited in capability compared to larger models, **Qwen3-0.6B** excels at:
- Running **instantly** on CPUs without GPU
- Fitting into **<2GB RAM**, even when quantized
- Enabling **offline AI on microcontrollers, phones, or edge devices**
- Serving as a **fast baseline** for lightweight NLP tasks (intent detection, short responses)

It’s ideal for:
- Chatbots with simple flows
- On-device assistants
- Educational demos
- Rapid prototyping

## Model anaysis and rankings

I have run each of these models across 6 questions, and ranked them all based on the quality of the anwsers. 
**Qwen3-0.6B-f16:Q5_K_M** is the best model across all question types, but if you want to play it safe with a higher precision model, then you could consider using **Qwen3-0.6B-f16:Q8_0**.

You can read the results here: [Qwen3-0.6b-f16-analysis.md](Qwen3-0.6b-f16-analysis.md)

If you find this useful, please give the project a ❀️ like.

## Usage

Load this model using:
- [OpenWebUI](https://openwebui.com) – self-hosted AI interface with RAG & tools
- [LM Studio](https://lmstudio.ai) – desktop app with GPU support and chat templates
- [GPT4All](https://gpt4all.io) – private, local AI chatbot (offline-first)
- Or directly via `llama.cpp`

Each quantized model includes its own `README.md` and shares a common `MODELFILE` for optimal configuration.

Importing directly into Ollama should work, but you might encounter this error: `Error: invalid character '<' looking for beginning of value`.
In this case try these steps:

1. `wget https://huggingface.co/geoffmunn/Qwen3-0.6B-f16/resolve/main/Qwen3-0.6B-f16%3AQ3_K_M.gguf` (replace the quantised version with the one you want)
2. `nano Modelfile` and enter these details (again, replacing Q3_K_M with the version you want):
```text
FROM ./Qwen3-0.6B-f16:Q3_K_M.gguf

# Chat template using ChatML (used by Qwen)
SYSTEM You are a helpful assistant

TEMPLATE "{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>

# Default sampling
PARAMETER temperature 0.6
PARAMETER top_p 0.95
PARAMETER top_k 20
PARAMETER min_p 0.0
PARAMETER repeat_penalty 1.1
PARAMETER num_ctx 4096
```

The `num_ctx` value has been dropped to increase speed significantly.

3. Then run this command: `ollama create Qwen3-0.6B-f16:Q3_K_M -f Modelfile`

You will now see "Qwen3-0.6B-f16:Q3_K_M" in your Ollama model list.

These import steps are also useful if you want to customise the default parameters or system prompt.

## Author

πŸ‘€ Geoff Munn (@geoffmunn)  
πŸ”— [Hugging Face Profile](https://huggingface.co/geoffmunn)

## Disclaimer

This is a community conversion for local inference. Not affiliated with Alibaba Cloud or the Qwen team.