File size: 4,934 Bytes
47c0d59
 
 
 
 
d894191
 
 
 
47c0d59
 
 
7880ae3
47c0d59
7880ae3
47c0d59
 
 
 
dae69b0
47c0d59
 
 
 
 
 
58671f2
47c0d59
 
 
 
 
 
d894191
 
 
 
 
47c0d59
 
 
 
 
c761b8b
47c0d59
 
 
 
 
c761b8b
47c0d59
 
 
 
 
 
 
d894191
 
 
 
 
 
 
47c0d59
7880ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d894191
 
 
 
 
dae69b0
d894191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7880ae3
 
 
 
 
 
dae69b0
7880ae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c0d59
 
 
 
 
c761b8b
47c0d59
c761b8b
47c0d59
 
 
 
 
 
 
7880ae3
47c0d59
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
license: apache-2.0
tags:
  - gguf
  - qwen
  - qwen3-0.6b
  - qwen3-0.6b-q6
  - qwen3-0.6b-q6_k
  - qwen3-0.6b-q6_k-gguf
  - llama.cpp
  - quantized
  - text-generation
  - chat
  - edge-ai
  - tiny-model
base_model: Qwen/Qwen3-0.6B
author: geoffmunn
---

# Qwen3-0.6B-f16:Q6_K

Quantized version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) at **Q6_K** level, derived from **f16** base weights.

## Model Info

- **Format**: GGUF (for llama.cpp and compatible runtimes)
- **Size**: 623 MB
- **Precision**: Q6_K
- **Base Model**: [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
- **Conversion Tool**: [llama.cpp](https://github.com/ggerganov/llama.cpp)

## Quality & Performance

| Metric             | Value                                            |
|--------------------|--------------------------------------------------|
| **Speed**          | 🐌 Slow                                          |
| **RAM Required**   | ~1.4 GB                                          |
| **Recommendation** | Showed up in a few results, but not recommended. |

## Prompt Template (ChatML)

This model uses the **ChatML** format used by Qwen:

```text
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

Set this in your app (LM Studio, OpenWebUI, etc.) for best results.

## Generation Parameters

Recommended defaults:

| Parameter      | Value |
|----------------|-------|
| Temperature    | 0.6   |
| Top-P          | 0.95  |
| Top-K          | 20    |
| Min-P          | 0.0   |
| Repeat Penalty | 1.1   |

Stop sequences: `<|im_end|>`, `<|im_start|>`

> ⚠️ Due to model size, avoid temperatures above 0.9 β€” outputs become highly unpredictable.

## πŸ’‘ Usage Tips

> This model is best suited for lightweight tasks:
>
> ### βœ… Ideal Uses
> - Quick replies and canned responses
> - Intent classification (e.g., β€œIs this user asking for help?”)
> - UI prototyping and local AI testing
> - Embedded/NPU deployment
>
> ### ❌ Limitations
> - No complex reasoning or multi-step logic
> - Poor math and code generation
> - Limited world knowledge
> - May repeat or hallucinate frequently at higher temps
>
> ---
>
> πŸ”„ **Fast Iteration Friendly**  
> Perfect for developers building prompt templates or testing UI integrations.
>
> πŸ”‹ **Runs on Almost Anything**  
> Even Raspberry Pi Zero W can run Q2_K with swap enabled.
>
> πŸ“¦ **Tiny Footprint**  
> Fits easily on USB drives, microSD cards, or IoT devices.

## Customisation & Troubleshooting

Importing directly into Ollama should work, but you might encounter this error: `Error: invalid character '<' looking for beginning of value`.
In this case try these steps:

1. `wget https://huggingface.co/geoffmunn/Qwen3-0.6B-f16/resolve/main/Qwen3-0.6B-f16%3AQ6_K.gguf`
2. `nano Modelfile` and enter these details:
```text
FROM ./Qwen3-0.6B-f16:Q6_K.gguf
 
# Chat template using ChatML (used by Qwen)
SYSTEM You are a helpful assistant

TEMPLATE "{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>

# Default sampling
PARAMETER temperature 0.6
PARAMETER top_p 0.95
PARAMETER top_k 20
PARAMETER min_p 0.0
PARAMETER repeat_penalty 1.1
PARAMETER num_ctx 4096
```

The `num_ctx` value has been dropped to increase speed significantly.

3. Then run this command: `ollama create Qwen3-0.6B-f16:Q6_K -f Modelfile`

You will now see "Qwen3-0.6B-f16:Q6_K" in your Ollama model list.

These import steps are also useful if you want to customise the default parameters or system prompt.

## πŸ–₯️ CLI Example Using Ollama or TGI Server

Here’s how you can query this model via API using `curl` and `jq`. Replace the endpoint with your local server (e.g., Ollama, Text Generation Inference).

```bash
curl http://localhost:11434/api/generate -s -N -d '{
  "model": "hf.co/geoffmunn/Qwen3-0.6B-f16:Q6_K",
  "prompt": "Respond exactly as follows: Explain what gravity is in one sentence suitable for a child.",
  "temperature": 0.6,
  "top_p": 0.95,
  "top_k": 20,
  "min_p": 0.0,
  "repeat_penalty": 1.1,
  "stream": false
}' | jq -r '.response'
```

🎯 **Why this works well**:
- The prompt is meaningful yet achievable for a tiny model.
- Temperature tuned appropriately: lower for deterministic output (`0.1`), higher for jokes (`0.8`).
- Uses `jq` to extract clean response.

> πŸ’¬ Tip: For ultra-low-latency use, try `Q3_K_M` or `Q4_K_S` on older laptops.

## Verification

Check integrity:

```bash
sha256sum -c ../SHA256SUMS.txt
```

## Usage

Compatible with:
- [LM Studio](https://lmstudio.ai) – local AI model runner
- [OpenWebUI](https://openwebui.com) – self-hosted AI interface
- [GPT4All](https://gpt4all.io) – private, offline AI chatbot
- Directly via `llama.cpp`

## License

Apache 2.0 – see base model for full terms.