--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_thresh07_fold4 results: [] --- # mdeberta-semeval25_thresh07_fold4 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 9.5003 - Precision Samples: 0.1588 - Recall Samples: 0.5436 - F1 Samples: 0.2269 - Precision Macro: 0.8128 - Recall Macro: 0.3798 - F1 Macro: 0.2888 - Precision Micro: 0.1456 - Recall Micro: 0.4556 - F1 Micro: 0.2207 - Precision Weighted: 0.5240 - Recall Weighted: 0.4556 - F1 Weighted: 0.1534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 10.3744 | 1.0 | 19 | 10.7628 | 0.2690 | 0.1931 | 0.1931 | 0.9912 | 0.2441 | 0.2372 | 0.2090 | 0.0778 | 0.1134 | 0.9363 | 0.0778 | 0.0277 | | 10.0961 | 2.0 | 38 | 10.4140 | 0.1563 | 0.2989 | 0.1865 | 0.9616 | 0.2687 | 0.2434 | 0.1537 | 0.1806 | 0.1660 | 0.8264 | 0.1806 | 0.0536 | | 9.7494 | 3.0 | 57 | 10.2283 | 0.1244 | 0.3615 | 0.1701 | 0.9252 | 0.2917 | 0.2499 | 0.1213 | 0.2472 | 0.1627 | 0.7176 | 0.2472 | 0.0745 | | 9.5342 | 4.0 | 76 | 10.0846 | 0.1375 | 0.4211 | 0.1914 | 0.9118 | 0.3172 | 0.2538 | 0.1304 | 0.3278 | 0.1866 | 0.6833 | 0.3278 | 0.0860 | | 9.4527 | 5.0 | 95 | 9.8924 | 0.1393 | 0.4450 | 0.1954 | 0.8907 | 0.3274 | 0.2559 | 0.1305 | 0.3528 | 0.1905 | 0.6556 | 0.3528 | 0.0911 | | 8.9545 | 6.0 | 114 | 9.7473 | 0.1500 | 0.4846 | 0.2113 | 0.8720 | 0.3485 | 0.2719 | 0.1398 | 0.3944 | 0.2064 | 0.6157 | 0.3944 | 0.1235 | | 8.7472 | 7.0 | 133 | 9.6448 | 0.1705 | 0.5144 | 0.2317 | 0.8316 | 0.3604 | 0.2813 | 0.1522 | 0.4222 | 0.2237 | 0.5439 | 0.4222 | 0.1456 | | 8.2567 | 8.0 | 152 | 9.5645 | 0.1648 | 0.5353 | 0.2314 | 0.8158 | 0.3752 | 0.2889 | 0.1497 | 0.4444 | 0.2239 | 0.5282 | 0.4444 | 0.1518 | | 8.7461 | 9.0 | 171 | 9.5190 | 0.1593 | 0.5387 | 0.2270 | 0.8004 | 0.3789 | 0.2871 | 0.1467 | 0.45 | 0.2213 | 0.5041 | 0.45 | 0.1474 | | 8.5203 | 10.0 | 190 | 9.5003 | 0.1588 | 0.5436 | 0.2269 | 0.8128 | 0.3798 | 0.2888 | 0.1456 | 0.4556 | 0.2207 | 0.5240 | 0.4556 | 0.1534 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1