End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: microsoft/mdeberta-v3-base
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: mdeberta-semeval25_narratives_fold4
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# mdeberta-semeval25_narratives_fold4
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 3.7738
|
| 20 |
+
- Precision Samples: 0.3380
|
| 21 |
+
- Recall Samples: 0.8009
|
| 22 |
+
- F1 Samples: 0.4403
|
| 23 |
+
- Precision Macro: 0.6671
|
| 24 |
+
- Recall Macro: 0.5160
|
| 25 |
+
- F1 Macro: 0.2621
|
| 26 |
+
- Precision Micro: 0.2894
|
| 27 |
+
- Recall Micro: 0.7843
|
| 28 |
+
- F1 Micro: 0.4228
|
| 29 |
+
- Precision Weighted: 0.4553
|
| 30 |
+
- Recall Weighted: 0.7843
|
| 31 |
+
- F1 Weighted: 0.3823
|
| 32 |
+
|
| 33 |
+
## Model description
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Intended uses & limitations
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training and evaluation data
|
| 42 |
+
|
| 43 |
+
More information needed
|
| 44 |
+
|
| 45 |
+
## Training procedure
|
| 46 |
+
|
| 47 |
+
### Training hyperparameters
|
| 48 |
+
|
| 49 |
+
The following hyperparameters were used during training:
|
| 50 |
+
- learning_rate: 2e-05
|
| 51 |
+
- train_batch_size: 32
|
| 52 |
+
- eval_batch_size: 32
|
| 53 |
+
- seed: 42
|
| 54 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 55 |
+
- lr_scheduler_type: linear
|
| 56 |
+
- num_epochs: 10
|
| 57 |
+
|
| 58 |
+
### Training results
|
| 59 |
+
|
| 60 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|
| 61 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
|
| 62 |
+
| 5.7927 | 1.0 | 19 | 4.9876 | 0.2483 | 0.1091 | 0.1382 | 0.9632 | 0.0952 | 0.0652 | 0.2270 | 0.1255 | 0.1616 | 0.9030 | 0.1255 | 0.0464 |
|
| 63 |
+
| 5.0898 | 2.0 | 38 | 4.7749 | 0.2379 | 0.5017 | 0.3043 | 0.8531 | 0.2349 | 0.1180 | 0.2254 | 0.4588 | 0.3023 | 0.6408 | 0.4588 | 0.1736 |
|
| 64 |
+
| 5.1841 | 3.0 | 57 | 4.4511 | 0.3230 | 0.6657 | 0.4132 | 0.7709 | 0.3350 | 0.1954 | 0.3002 | 0.6039 | 0.4010 | 0.5402 | 0.6039 | 0.3045 |
|
| 65 |
+
| 4.8203 | 4.0 | 76 | 4.2527 | 0.3084 | 0.7145 | 0.4023 | 0.7292 | 0.4023 | 0.2114 | 0.2723 | 0.6824 | 0.3893 | 0.4982 | 0.6824 | 0.3252 |
|
| 66 |
+
| 4.6179 | 5.0 | 95 | 4.0366 | 0.3637 | 0.7630 | 0.4515 | 0.7081 | 0.4523 | 0.2479 | 0.3008 | 0.7373 | 0.4273 | 0.4834 | 0.7373 | 0.3739 |
|
| 67 |
+
| 4.4285 | 6.0 | 114 | 3.9329 | 0.3333 | 0.7917 | 0.4395 | 0.6691 | 0.5050 | 0.2637 | 0.2901 | 0.7725 | 0.4218 | 0.4555 | 0.7725 | 0.3812 |
|
| 68 |
+
| 4.094 | 7.0 | 133 | 3.8543 | 0.3329 | 0.8044 | 0.4390 | 0.6657 | 0.5146 | 0.2607 | 0.2899 | 0.7843 | 0.4233 | 0.4555 | 0.7843 | 0.3826 |
|
| 69 |
+
| 4.1865 | 8.0 | 152 | 3.8027 | 0.3463 | 0.8113 | 0.4497 | 0.6703 | 0.5162 | 0.2663 | 0.2987 | 0.7882 | 0.4332 | 0.4619 | 0.7882 | 0.3909 |
|
| 70 |
+
| 4.3648 | 9.0 | 171 | 3.7872 | 0.3388 | 0.8078 | 0.4420 | 0.6670 | 0.5176 | 0.2625 | 0.2896 | 0.7882 | 0.4236 | 0.4545 | 0.7882 | 0.3824 |
|
| 71 |
+
| 3.9481 | 10.0 | 190 | 3.7738 | 0.3380 | 0.8009 | 0.4403 | 0.6671 | 0.5160 | 0.2621 | 0.2894 | 0.7843 | 0.4228 | 0.4553 | 0.7843 | 0.3823 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.46.0
|
| 77 |
+
- Pytorch 2.3.1
|
| 78 |
+
- Datasets 2.21.0
|
| 79 |
+
- Tokenizers 0.20.1
|