--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer model-index: - name: mdeberta-semeval25_narratives09_fold1 results: [] --- # mdeberta-semeval25_narratives09_fold1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1440 - Precision Samples: 0.3489 - Recall Samples: 0.7666 - F1 Samples: 0.4484 - Precision Macro: 0.6713 - Recall Macro: 0.4701 - F1 Macro: 0.2642 - Precision Micro: 0.3133 - Recall Micro: 0.7518 - F1 Micro: 0.4423 - Precision Weighted: 0.4454 - Recall Weighted: 0.7518 - F1 Weighted: 0.3929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:| | 5.3976 | 1.0 | 19 | 5.3094 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | | 5.0729 | 2.0 | 38 | 5.0051 | 0.2991 | 0.4812 | 0.3465 | 0.8683 | 0.2245 | 0.1355 | 0.3056 | 0.4496 | 0.3639 | 0.6682 | 0.4496 | 0.2244 | | 4.799 | 3.0 | 57 | 4.7268 | 0.3634 | 0.5035 | 0.3759 | 0.8348 | 0.2364 | 0.1574 | 0.3291 | 0.4640 | 0.3851 | 0.6206 | 0.4640 | 0.2617 | | 4.4077 | 4.0 | 76 | 4.5072 | 0.3846 | 0.6225 | 0.4435 | 0.7933 | 0.3190 | 0.2043 | 0.3383 | 0.5755 | 0.4261 | 0.5591 | 0.5755 | 0.3232 | | 4.1905 | 5.0 | 95 | 4.3919 | 0.4006 | 0.6444 | 0.4575 | 0.7484 | 0.3320 | 0.2140 | 0.3395 | 0.5935 | 0.4319 | 0.5242 | 0.5935 | 0.3411 | | 4.1939 | 6.0 | 114 | 4.2724 | 0.3817 | 0.7296 | 0.4634 | 0.7094 | 0.4205 | 0.2478 | 0.3229 | 0.7050 | 0.4429 | 0.4663 | 0.7050 | 0.3791 | | 3.9286 | 7.0 | 133 | 4.2600 | 0.3753 | 0.7336 | 0.4620 | 0.6853 | 0.4257 | 0.2568 | 0.3311 | 0.7050 | 0.4506 | 0.4556 | 0.7050 | 0.3882 | | 3.8896 | 8.0 | 152 | 4.1871 | 0.3528 | 0.7581 | 0.4505 | 0.6713 | 0.4559 | 0.2625 | 0.3188 | 0.7374 | 0.4452 | 0.4462 | 0.7374 | 0.3929 | | 3.993 | 9.0 | 171 | 4.1598 | 0.3525 | 0.7629 | 0.4503 | 0.6712 | 0.4645 | 0.2639 | 0.3170 | 0.7446 | 0.4447 | 0.4443 | 0.7446 | 0.3920 | | 4.1424 | 10.0 | 190 | 4.1440 | 0.3489 | 0.7666 | 0.4484 | 0.6713 | 0.4701 | 0.2642 | 0.3133 | 0.7518 | 0.4423 | 0.4454 | 0.7518 | 0.3929 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1