File size: 4,457 Bytes
acd6369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2c8f6
 
 
 
 
 
 
 
 
 
 
 
 
acd6369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2c8f6
 
 
 
 
 
 
 
 
 
acd6369
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
model-index:
- name: mdeberta-semeval25_fold1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mdeberta-semeval25_fold1

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 8.3259
- Precision Samples: 0.0548
- Recall Samples: 0.9029
- F1 Samples: 0.1006
- Precision Macro: 0.3664
- Recall Macro: 0.7660
- F1 Macro: 0.2045
- Precision Micro: 0.0544
- Recall Micro: 0.8735
- F1 Micro: 0.1024
- Precision Weighted: 0.1465
- Recall Weighted: 0.8735
- F1 Weighted: 0.1391

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
| 10.7598       | 1.0   | 19   | 9.6321          | 0.0361            | 0.8335         | 0.0679     | 0.3216          | 0.7097       | 0.1401   | 0.0363          | 0.7994       | 0.0694   | 0.1978             | 0.7994          | 0.1114      |
| 10.3024       | 2.0   | 38   | 9.2562          | 0.0422            | 0.8489         | 0.0787     | 0.4876          | 0.6843       | 0.2168   | 0.0422          | 0.8210       | 0.0803   | 0.2184             | 0.8210          | 0.1101      |
| 9.696         | 3.0   | 57   | 9.0731          | 0.0446            | 0.8616         | 0.0828     | 0.5117          | 0.695        | 0.2535   | 0.0445          | 0.8241       | 0.0844   | 0.2189             | 0.8241          | 0.1111      |
| 9.9846        | 4.0   | 76   | 8.8691          | 0.0462            | 0.8614         | 0.0856     | 0.4678          | 0.6926       | 0.2319   | 0.0458          | 0.8241       | 0.0868   | 0.1959             | 0.8241          | 0.1139      |
| 9.5643        | 5.0   | 95   | 8.6872          | 0.0492            | 0.8677         | 0.0908     | 0.4610          | 0.7167       | 0.2393   | 0.0487          | 0.8395       | 0.0921   | 0.1975             | 0.8395          | 0.1216      |
| 9.522         | 6.0   | 114  | 8.5495          | 0.0499            | 0.8787         | 0.0922     | 0.4629          | 0.7317       | 0.2542   | 0.0497          | 0.8457       | 0.0939   | 0.1827             | 0.8457          | 0.1234      |
| 9.1263        | 7.0   | 133  | 8.4783          | 0.0518            | 0.8849         | 0.0954     | 0.4306          | 0.7354       | 0.2449   | 0.0513          | 0.8488       | 0.0968   | 0.1533             | 0.8488          | 0.1307      |
| 9.2682        | 8.0   | 152  | 8.3858          | 0.0536            | 0.8928         | 0.0985     | 0.4086          | 0.7496       | 0.2234   | 0.0532          | 0.8642       | 0.1001   | 0.1551             | 0.8642          | 0.1342      |
| 9.1804        | 9.0   | 171  | 8.3447          | 0.0536            | 0.8928         | 0.0985     | 0.3996          | 0.7503       | 0.2145   | 0.0531          | 0.8642       | 0.1001   | 0.1581             | 0.8642          | 0.1365      |
| 8.8361        | 10.0  | 190  | 8.3259          | 0.0548            | 0.9029         | 0.1006     | 0.3664          | 0.7660       | 0.2045   | 0.0544          | 0.8735       | 0.1024   | 0.1465             | 0.8735          | 0.1391      |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1