Correct the inference code.
Browse files- .gitattributes +1 -0
- inference_demo/examples/518L0uDGe0L.jpg +0 -0
- inference_demo/examples/Q673659.jpg +0 -0
- inference_demo/examples/oven_05011373.jpg +0 -0
- inference_demo/examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4 +3 -0
- inference_demo/inference.py +141 -0
- inference_demo/modeling_unite.py +88 -0
.gitattributes
CHANGED
|
@@ -37,3 +37,4 @@ tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
| 37 |
inference_demo/examples/1408px-Lilium_philadelphicum_var._philadelphicum.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
inference_demo/examples/stock-footage-pictorial-upper-view-sunset-beams-light-waterfall-stone-cascade-and-fresh-green-tropical-trees.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 37 |
inference_demo/examples/1408px-Lilium_philadelphicum_var._philadelphicum.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
inference_demo/examples/stock-footage-pictorial-upper-view-sunset-beams-light-waterfall-stone-cascade-and-fresh-green-tropical-trees.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
inference_demo/examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4 filter=lfs diff=lfs merge=lfs -text
|
inference_demo/examples/518L0uDGe0L.jpg
ADDED
|
inference_demo/examples/Q673659.jpg
ADDED
|
inference_demo/examples/oven_05011373.jpg
ADDED
|
inference_demo/examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c45bfeb693653ce84ae877d3a81ff5d181c4df6f80c47c7854b7e4b1ce866763
|
| 3 |
+
size 1430386
|
inference_demo/inference.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
from modeling_unite import UniteQwen2VL
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
model_path = 'friedrichor/Unite-Base-Qwen2-VL-2B'
|
| 8 |
+
model = UniteQwen2VL.from_pretrained(
|
| 9 |
+
model_path,
|
| 10 |
+
torch_dtype=torch.bfloat16,
|
| 11 |
+
device_map="cuda"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
|
| 15 |
+
# model = UniteQwen2VL.from_pretrained(
|
| 16 |
+
# model_path,
|
| 17 |
+
# device_map="cuda",
|
| 18 |
+
# torch_dtype=torch.bfloat16,
|
| 19 |
+
# attn_implementation='flash_attention_2',
|
| 20 |
+
# low_cpu_mem_usage=True,
|
| 21 |
+
# )
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
| 24 |
+
processor = AutoProcessor.from_pretrained(model_path, min_pixels=256*28*28, max_pixels=1280*28*28)
|
| 25 |
+
|
| 26 |
+
def process_messages(msg):
|
| 27 |
+
text = processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) + "<|endoftext|>"
|
| 28 |
+
image_inputs, video_inputs = process_vision_info(msg)
|
| 29 |
+
inputs = processor(
|
| 30 |
+
text=[text],
|
| 31 |
+
images=image_inputs,
|
| 32 |
+
videos=video_inputs,
|
| 33 |
+
padding=True,
|
| 34 |
+
return_tensors="pt",
|
| 35 |
+
)
|
| 36 |
+
inputs = inputs.to("cuda")
|
| 37 |
+
|
| 38 |
+
return inputs
|
| 39 |
+
|
| 40 |
+
## ============================== Text-Image ==============================
|
| 41 |
+
messages_txt = [
|
| 42 |
+
{
|
| 43 |
+
"role": "user",
|
| 44 |
+
"content": [
|
| 45 |
+
{"type": "text", "text": "The book titled 'Riding with Reindeer - A Bicycle Odyssey through Finland, Lapland, and the Arctic' provides a detailed account of a journey that explores the regions of Lapland and the Arctic, focusing on the experience of riding with reindeer."},
|
| 46 |
+
{"type": "text", "text": "\nSummary above sentence in one word:"},
|
| 47 |
+
],
|
| 48 |
+
}
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
messages_img = [
|
| 52 |
+
{
|
| 53 |
+
"role": "user",
|
| 54 |
+
"content": [
|
| 55 |
+
{"type": "image", "image": "./examples/518L0uDGe0L.jpg"},
|
| 56 |
+
{"type": "text", "text": "\nSummary above image in one word:"},
|
| 57 |
+
],
|
| 58 |
+
}
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
inputs_txt = process_messages(messages_txt)
|
| 62 |
+
inputs_img = process_messages(messages_img)
|
| 63 |
+
|
| 64 |
+
with torch.no_grad():
|
| 65 |
+
embeddings_txt = model(**inputs_txt) # [1, 1536]
|
| 66 |
+
embeddings_img = model(**inputs_img) # [1, 1536]
|
| 67 |
+
print(f"embeddings_txt.shape: {embeddings_txt.shape}")
|
| 68 |
+
print(f"embeddings_img.shape: {embeddings_img.shape}")
|
| 69 |
+
|
| 70 |
+
print(torch.matmul(embeddings_txt, embeddings_img.T))
|
| 71 |
+
# tensor([[0.7500]], dtype=torch.bfloat16)
|
| 72 |
+
|
| 73 |
+
## ============================== Text-Video ==============================
|
| 74 |
+
messages_txt = [
|
| 75 |
+
{
|
| 76 |
+
"role": "user",
|
| 77 |
+
"content": [
|
| 78 |
+
{"type": "text", "text": "Timelapse of stormy clouds over open sea and snowcapped mountain"},
|
| 79 |
+
{"type": "text", "text": "\nSummary above sentence in one word:"},
|
| 80 |
+
],
|
| 81 |
+
}
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
messages_vid = [
|
| 85 |
+
{
|
| 86 |
+
"role": "user",
|
| 87 |
+
"content": [
|
| 88 |
+
{
|
| 89 |
+
"type": "video",
|
| 90 |
+
"video": "./examples/stock-footage-timelapse-of-stormy-clouds-over-open-sea-and-snowcapped-mountain.mp4",
|
| 91 |
+
"max_pixels": 360 * 420,
|
| 92 |
+
"fps": 1,
|
| 93 |
+
"max_frames": 32
|
| 94 |
+
},
|
| 95 |
+
{"type": "text", "text": "\nSummary above video in one word:"},
|
| 96 |
+
],
|
| 97 |
+
}
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
inputs_txt = process_messages(messages_txt)
|
| 101 |
+
inputs_vid = process_messages(messages_vid)
|
| 102 |
+
|
| 103 |
+
with torch.no_grad():
|
| 104 |
+
embeddings_txt = model(**inputs_txt) # [1, 1536]
|
| 105 |
+
embeddings_vid = model(**inputs_vid) # [1, 1536]
|
| 106 |
+
|
| 107 |
+
print(torch.matmul(embeddings_txt, embeddings_vid.T))
|
| 108 |
+
# tensor([[0.5664]], dtype=torch.bfloat16)
|
| 109 |
+
|
| 110 |
+
## ============================== Fused Modal ==============================
|
| 111 |
+
messages_qry = [
|
| 112 |
+
{
|
| 113 |
+
"role": "user",
|
| 114 |
+
"content": [
|
| 115 |
+
{"type": "image", "image": "./examples/oven_05011373.jpg"},
|
| 116 |
+
{"type": "text", "text": "What is the name of this place?"},
|
| 117 |
+
{"type": "text", "text": "\nSummary above sentence and image in one word:"},
|
| 118 |
+
],
|
| 119 |
+
}
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
messages_tgt = [
|
| 123 |
+
{
|
| 124 |
+
"role": "user",
|
| 125 |
+
"content": [
|
| 126 |
+
{"type": "image", "image": "./examples/Q673659.jpg"},
|
| 127 |
+
{"type": "text", "text": "Marina Beach."},
|
| 128 |
+
{"type": "text", "text": "\nSummary above sentence and image in one word:"},
|
| 129 |
+
],
|
| 130 |
+
}
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
inputs_qry = process_messages(messages_qry)
|
| 134 |
+
inputs_tgt = process_messages(messages_tgt)
|
| 135 |
+
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
embeddings_qry = model(**inputs_qry) # [1, 1536]
|
| 138 |
+
embeddings_tgt = model(**inputs_tgt) # [1, 1536]
|
| 139 |
+
|
| 140 |
+
print(torch.matmul(embeddings_qry, embeddings_tgt.T))
|
| 141 |
+
# tensor([[0.7695]], dtype=torch.bfloat16)
|
inference_demo/modeling_unite.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, List
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import Qwen2VLConfig, Qwen2VLForConditionalGeneration, Qwen2VLModel
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class UniteQwen2VLConfig(Qwen2VLConfig):
|
| 9 |
+
model_type = "unite_qwen2_vl"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class UniteQwen2VL(Qwen2VLForConditionalGeneration):
|
| 13 |
+
def __init__(self, config):
|
| 14 |
+
Qwen2VLForConditionalGeneration.__init__(self, config)
|
| 15 |
+
config.model_type = "unite_qwen2_vl"
|
| 16 |
+
|
| 17 |
+
# Initialize weights and apply final processing
|
| 18 |
+
self.post_init()
|
| 19 |
+
|
| 20 |
+
self.normalize = True
|
| 21 |
+
|
| 22 |
+
def forward(
|
| 23 |
+
self,
|
| 24 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 25 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 26 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 27 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 28 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 29 |
+
use_cache: Optional[bool] = None,
|
| 30 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 31 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 32 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 33 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 34 |
+
pooling_mask: Optional[torch.LongTensor] = None,
|
| 35 |
+
**kwargs
|
| 36 |
+
) -> torch.Tensor:
|
| 37 |
+
if inputs_embeds is None:
|
| 38 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
| 39 |
+
if pixel_values is not None:
|
| 40 |
+
pixel_values = pixel_values.type(self.visual.get_dtype())
|
| 41 |
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
| 42 |
+
image_mask = (
|
| 43 |
+
(input_ids == self.config.image_token_id)
|
| 44 |
+
.unsqueeze(-1)
|
| 45 |
+
.expand_as(inputs_embeds)
|
| 46 |
+
.to(inputs_embeds.device)
|
| 47 |
+
)
|
| 48 |
+
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 49 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
| 50 |
+
if pixel_values_videos is not None:
|
| 51 |
+
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
| 52 |
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
| 53 |
+
video_mask = (
|
| 54 |
+
(input_ids == self.config.video_token_id)
|
| 55 |
+
.unsqueeze(-1)
|
| 56 |
+
.expand_as(inputs_embeds)
|
| 57 |
+
.to(inputs_embeds.device)
|
| 58 |
+
)
|
| 59 |
+
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
| 60 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
| 61 |
+
if attention_mask is not None:
|
| 62 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
| 63 |
+
|
| 64 |
+
outputs = self.model(
|
| 65 |
+
input_ids=None,
|
| 66 |
+
position_ids=position_ids,
|
| 67 |
+
attention_mask=attention_mask,
|
| 68 |
+
past_key_values=past_key_values,
|
| 69 |
+
inputs_embeds=inputs_embeds,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
|
| 73 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
| 74 |
+
|
| 75 |
+
if left_padding:
|
| 76 |
+
embeddings = outputs.last_hidden_state[:, -1]
|
| 77 |
+
else:
|
| 78 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
| 79 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
| 80 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
| 81 |
+
batch_size, device=outputs.last_hidden_state.device
|
| 82 |
+
), sequence_lengths]
|
| 83 |
+
if self.normalize:
|
| 84 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 85 |
+
|
| 86 |
+
return embeddings.contiguous()
|
| 87 |
+
|
| 88 |
+
|