--- library_name: peft license: other base_model: facebook/opt-125m tags: - axolotl - generated_from_trainer model-index: - name: 18092189-46f9-4027-aa36-175d1e605e4a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora auto_resume_from_checkpoints: true base_model: facebook/opt-125m bf16: auto chat_template: llama3 dataset_prepared_path: null dataset_processes: 6 datasets: - data_files: - 818f8460304dc8f3_train_data.json ds_type: json format: custom path: /workspace/input_data/818f8460304dc8f3_train_data.json type: field_input: hypothesis field_instruction: premise field_output: augmented_hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: error577/18092189-46f9-4027-aa36-175d1e605e4a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 24 mlflow_experiment_name: /tmp/818f8460304dc8f3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 sequence_len: 256 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.005 wandb_entity: null wandb_mode: online wandb_name: af50a6d4-247f-4e76-817b-1cfd6dd7131d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: af50a6d4-247f-4e76-817b-1cfd6dd7131d warmup_steps: 30 weight_decay: 0.0 xformers_attention: null ```

# 18092189-46f9-4027-aa36-175d1e605e4a This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.7141 | 0.0005 | 1 | 3.1690 | | 1.3992 | 0.0960 | 200 | 0.3349 | | 1.0472 | 0.1921 | 400 | 0.2430 | | 0.883 | 0.2881 | 600 | 0.2006 | | 0.7357 | 0.3842 | 800 | 0.1706 | | 0.7221 | 0.4802 | 1000 | 0.1574 | | 0.7825 | 0.5763 | 1200 | 0.1546 | | 0.5444 | 0.6723 | 1400 | 0.1439 | | 0.6198 | 0.7684 | 1600 | 0.1449 | | 0.5838 | 0.8644 | 1800 | 0.1378 | | 0.5814 | 0.9605 | 2000 | 0.1363 | | 0.552 | 1.0565 | 2200 | 0.1346 | | 0.5699 | 1.1526 | 2400 | 0.1337 | | 0.5114 | 1.2486 | 2600 | 0.1359 | | 0.5164 | 1.3447 | 2800 | 0.1310 | | 0.4851 | 1.4407 | 3000 | 0.1314 | | 0.4927 | 1.5368 | 3200 | 0.1320 | | 0.485 | 1.6328 | 3400 | 0.1287 | | 0.5204 | 1.7289 | 3600 | 0.1270 | | 0.5643 | 1.8249 | 3800 | 0.1277 | | 0.525 | 1.9210 | 4000 | 0.1275 | | 0.4682 | 2.0170 | 4200 | 0.1264 | | 0.5078 | 2.1131 | 4400 | 0.1259 | | 0.5088 | 2.2091 | 4600 | 0.1257 | | 0.5096 | 2.3052 | 4800 | 0.1250 | | 0.5158 | 2.4012 | 5000 | 0.1252 | | 0.5353 | 2.4973 | 5200 | 0.1241 | | 0.5068 | 2.5933 | 5400 | 0.1242 | | 0.5512 | 2.6894 | 5600 | 0.1241 | | 0.472 | 2.7854 | 5800 | 0.1242 | | 0.4644 | 2.8815 | 6000 | 0.1242 | | 0.47 | 2.9775 | 6200 | 0.1241 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1