--- library_name: transformers language: - ha license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - eldad-akhaumere/common_voice_16_0_ metrics: - bleu model-index: - name: Whisper Small_Ha Bleu - Eldad Akhaumere results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0_ type: eldad-akhaumere/common_voice_16_0_ config: ha split: None args: 'config: ha, split: test' metrics: - name: Bleu type: bleu value: 11.764900582287524 --- # Whisper Small_Ha Bleu - Eldad Akhaumere This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0_ dataset. It achieves the following results on the evaluation set: - Loss: 1.8567 - Bleu: 11.7649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4391 | 0.3185 | 50 | 1.9226 | 7.4601 | | 0.3422 | 0.6369 | 100 | 1.9320 | 9.7294 | | 0.3862 | 0.9554 | 150 | 1.8567 | 11.7649 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.8.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.4