eevvgg's picture
add cite
819cccd verified
---
language:
- pl
pipeline_tag: text-classification
widget:
- text: "Przykro patrzeć, a słuchać się nie da."
example_title: "example 1"
- text: "Oczywiście ze Pan Prezydent to nasza duma narodowa!!"
example_title: "example 2"
tags:
- text
- sentiment
- politics
metrics:
- accuracy
- f1
model-index:
- name: PaReS-sentimenTw-political-PL
results:
- task:
type: sentiment-classification # Required. Example: automatic-speech-recognition
name: Text Classification # Optional. Example: Speech Recognition
dataset:
type: tweets # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: tweets_2020_electionsPL # Required. A pretty name for the dataset. Example: Common Voice (French)
metrics:
- type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics
value: 94.4 # Required. Example: 20.90
---
# PaReS-sentimenTw-political-PL
This model is a fine-tuned version of [dkleczek/bert-base-polish-cased-v1](https://huggingface.co/dkleczek/bert-base-polish-cased-v1) to predict 3-categorical sentiment.
Fine-tuned on 1k sample of manually annotated Twitter data.
Model developed as a part of ComPathos project: https://www.ncn.gov.pl/sites/default/files/listy-rankingowe/2020-09-30apsv2/streszczenia/497124-en.pdf
```
from transformers import pipeline
model_path = "eevvgg/PaReS-sentimenTw-political-PL"
sentiment_task = pipeline(task = "sentiment-analysis", model = model_path, tokenizer = model_path)
sequence = ["Cała ta śmieszna debata była próbą ukrycia problemów gospodarczych jakie są i nadejdą, pytania w większości o mało istotnych sprawach",
"Brawo panie ministrze!"]
result = sentiment_task(sequence)
labels = [i['label'] for i in result] # ['Negative', 'Positive']
```
## Model Sources
- **BibTex citation:**
```
@misc{SentimenTwPLGK2023,
author={Gajewska, Ewelina and Konat, Barbara},
title={PaReSTw: BERT for Sentiment Detection in Polish Language},
year={2023},
howpublished = {\url{https://huggingface.co/eevvgg/PaReS-sentimenTw-political-PL}},
}
```
## Intended uses & limitations
Sentiment detection in Polish data (fine-tuned on tweets from political domain).
## Training and evaluation data
- Trained for 3 epochs, mini-batch size of 8.
- Training results: loss: 0.1358926964368792
It achieves the following results on the test set (10%):
- No. examples = 100
- mini batch size = 8
- accuracy = 0.950
- macro f1 = 0.944
precision recall f1-score support
0 0.960 0.980 0.970 49
1 0.958 0.885 0.920 26
2 0.923 0.960 0.941 25