File size: 7,817 Bytes
8e8a4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b7190
8e8a4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df61981
8e8a4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
language:
- vi
license: apache-2.0
tags:
- text-to-speech
- tts
- vietnamese
- audio
- speech-synthesis
- neutts-air
- qwen2.5
datasets:
- custom
metrics:
- wer
library_name: transformers
pipeline_tag: text-to-speech
---

# NeuTTS-Air Vietnamese TTS

Vietnamese Text-to-Speech model finetuned from [NeuTTS-Air](https://huggingface.co/neuphonic/neutts-air) on 2.6M+ Vietnamese audio samples.

## Model Description

**NeuTTS-Air Vietnamese** là mô hình Text-to-Speech (TTS) cho tiếng Việt, được finetune từ NeuTTS-Air base model trên dataset lớn 2.6M+ mẫu audio tiếng Việt.

- **Base Model:** [neuphonic/neutts-air](https://huggingface.co/neuphonic/neutts-air) (Qwen2.5 0.5B - 552M parameters)
- **Language:** Vietnamese (vi)
- **Task:** Text-to-Speech (TTS)
- **Training Data:** 2.6M+ Vietnamese audio samples
- **Audio Codec:** [NeuCodec](https://huggingface.co/neuphonic/neucodec)
- **Sample Rate:** 24kHz
- **License:** Apache 2.0

## Features**High Quality Vietnamese TTS** - Natural Vietnamese speech synthesis  
✅ **Large-scale Training** - Trained on 2.6M+ samples  
✅ **Voice Cloning** - Clone voice from reference audio  
✅ **Text Normalization** - Automatic Vietnamese text normalization with ViNorm  
✅ **Fast Inference** - Optimized for production use  
✅ **Easy to Use** - Simple API and Gradio UI  

## Quick Start

### Installation

```bash
pip install torch transformers neucodec phonemizer librosa soundfile vinorm
```

**Install espeak-ng:**

```bash
# Ubuntu/Debian
sudo apt-get install espeak-ng

# macOS
brew install espeak-ng
```

### Usage

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from neucodec import NeuCodec
from phonemizer.backend import EspeakBackend
from vinorm import TTSnorm
import soundfile as sf
import numpy as np

# Load model
model_id = "dinhthuan/neutts-air-vi"  
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
).to("cuda")
model.eval()

# Load codec
codec = NeuCodec.from_pretrained("neuphonic/neucodec").to("cuda")
codec.eval()

# Initialize phonemizer
phonemizer = EspeakBackend(language='vi', preserve_punctuation=True, with_stress=True)

# Normalize and phonemize text
text = "Xin chào, đây là mô hình text to speech tiếng Việt"
text_normalized = TTSnorm(text, punc=False, unknown=True, lower=False, rule=False)
phones = phonemizer.phonemize([text_normalized])[0]

# Encode reference audio (for voice cloning)
from librosa import load as librosa_load
ref_audio_path = "reference.wav"
ref_text = "Đây là văn bản tham chiếu"
ref_text_normalized = TTSnorm(ref_text, punc=False, unknown=True, lower=False, rule=False)
ref_phones = phonemizer.phonemize([ref_text_normalized])[0]

wav, _ = librosa_load(ref_audio_path, sr=16000, mono=True)
wav_tensor = torch.from_numpy(wav).float().unsqueeze(0).unsqueeze(0)
with torch.no_grad():
    ref_codes = codec.encode_code(audio_or_path=wav_tensor).squeeze(0).squeeze(0).cpu()

# Generate speech
codes_str = "".join([f"<|speech_{i}|>" for i in ref_codes.tolist()])
combined_phones = ref_phones + " " + phones
chat = f"""user: Convert the text to speech:<|TEXT_PROMPT_START|>{combined_phones}<|TEXT_PROMPT_END|>\nassistant:<|SPEECH_GENERATION_START|>{codes_str}"""

input_ids = tokenizer.encode(chat, return_tensors="pt").to("cuda")
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")

with torch.no_grad():
    output = model.generate(
        input_ids,
        max_new_tokens=2048,
        temperature=1.0,
        top_k=50,
        eos_token_id=speech_end_id,
        pad_token_id=tokenizer.eos_token_id,
    )

# Decode to audio
output_text = tokenizer.decode(output[0], skip_special_tokens=False)
# Extract speech codes and decode with codec...
# (See full implementation in repository)

# Save audio
sf.write("output.wav", audio, 24000)
```

### Using the Inference Script

For easier usage, use the provided inference script:

```bash
# Clone repository
git clone https://github.com/iamdinhthuan/neutts-air-fintune
cd neutts-air-fintune

# Install dependencies
pip install -r requirements.txt

# Run inference
python infer_vietnamese.py \
    --text "Xin chào Việt Nam" \
    --ref_audio "reference.wav" \
    --ref_text "Text của reference audio" \
    --output "output.wav" \
    --checkpoint "path/to/checkpoint"
```

### Gradio UI

```bash
python gradio_app.py
```

Then open http://localhost:7860 in your browser.

## Training Details

### Training Data

- **Dataset Size:** 2.6M+ Vietnamese audio samples
- **Audio Format:** WAV, 16kHz, mono
- **Text:** Vietnamese with diacritics
- **Train/Val Split:** 99.5% / 0.5%

### Training Configuration

- **Base Model:** neuphonic/neutts-air (Qwen2.5 0.5B)
- **Epochs:** 3
- **Batch Size:** 4 per device
- **Gradient Accumulation:** 2 steps (effective batch size: 8)
- **Learning Rate:** 4e-5
- **Optimizer:** AdamW (fused)
- **Precision:** BFloat16
- **Hardware:** NVIDIA RTX 3090 (24GB)
- **Training Time:** ~2.5-3 days

### Optimizations

-**Pre-encoded Dataset** - 6x faster training
-**TF32 Precision** - 20% speedup on Ampere GPUs
-**Fused AdamW** - 10% faster optimizer
-**Dataloader Optimizations** - Pin memory, prefetch
-**Increased Batch Size** - Better GPU utilization

**Total Speedup:** 10-12x faster than baseline (30 days → 2.5-3 days)

## Performance

### Audio Quality

- **Sample Rate:** 24kHz
- **Natural Prosody:** Yes
- **Voice Cloning:** Supported
- **Text Normalization:** Automatic (numbers, dates, abbreviations)

### Inference Speed

- **GPU (RTX 3090):** ~0.5s per sentence
- **CPU:** ~3-5s per sentence

## Limitations

- Requires reference audio for voice cloning
- Best results with clear, high-quality reference audio (3-10 seconds)
- May struggle with very long sentences (>100 words)
- Requires Vietnamese text with proper diacritics for best quality

## Ethical Considerations

⚠️ **Voice Cloning Ethics:**
- Only use reference audio with proper consent
- Do not use for impersonation or fraud
- Respect privacy and intellectual property rights

⚠️ **Potential Misuse:**
- Deepfake audio generation
- Unauthorized voice cloning
- Misinformation campaigns

**Recommended Use:**
- Accessibility tools (text-to-speech for visually impaired)
- Educational content
- Virtual assistants
- Audiobook narration (with consent)
- Language learning applications

## Citation

If you use this model, please cite:

```bibtex
@misc{neutts-air-vietnamese,
  author = {Thuan Dinh Nguyen},
  title = {NeuTTS-Air Vietnamese TTS},
  year = {2025},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/YOUR_USERNAME/neutts-air-vietnamese}},
}

@misc{neutts-air,
  author = {Neuphonic},
  title = {NeuTTS-Air: Scalable TTS with Qwen2.5},
  year = {2024},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/neuphonic/neutts-air}},
}
```

## Acknowledgments

- **Base Model:** [Neuphonic](https://github.com/neuphonic) for NeuTTS-Air
- **Backbone:** [Qwen Team](https://github.com/QwenLM) for Qwen2.5
- **Codec:** [Neuphonic](https://github.com/neuphonic) for NeuCodec
- **Phonemizer:** [espeak-ng](https://github.com/espeak-ng/espeak-ng)
- **Text Normalization:** [ViNorm](https://github.com/v-nhandt21/ViNorm)

## Repository

Full training and inference code: [https://github.com/iamdinhthuan/neutts-air-fintune](https://github.com/iamdinhthuan/neutts-air-fintune)

## License

Apache 2.0 - See [LICENSE](LICENSE) for details.

## Contact

For questions or issues, please open an issue on [GitHub](https://github.com/iamdinhthuan/neutts-air-fintune/issues).

---

**Model Card Authors:** Your Name  
**Last Updated:** 2025-01-01