File size: 5,067 Bytes
8615eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: cc-by-nc-4.0
tags:
- depth-estimation
- computer-vision
- monocular-depth
- multi-view-geometry
- pose-estimation
library_name: depth-anything-3
pipeline_tag: depth-estimation
---

# Depth Anything 3: DA3NESTED-GIANT-LARGE

<div align="center">

[![Project Page](https://img.shields.io/badge/Project_Page-Depth_Anything_3-green)](https://depth-anything-3.github.io)
[![Paper](https://img.shields.io/badge/arXiv-Depth_Anything_3-red)](https://arxiv.org/abs/)
[![Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue)](https://huggingface.co/spaces/depth-anything/Depth-Anything-3)
[![Benchmark](https://img.shields.io/badge/Benchmark-VisGeo-yellow)](https://huggingface.co/datasets/depth-anything/VGB)

</div>

## Model Description

DA3 Nested model combining the any-view Giant model with the metric Large model for metric-scale visual geometry reconstruction. This is our recommended model that combines all capabilities.

| Property | Value |
|----------|-------|
| **Model Series** | Nested |
| **Parameters** | 1.40B |
| **License** | CC BY-NC 4.0 |

⚠️ **Non-commercial use only** due to CC BY-NC 4.0 license.

## Capabilities

- βœ… Relative Depth
- βœ… Pose Estimation
- βœ… Pose Conditioning
- βœ… 3D Gaussians
- βœ… Metric Depth
- βœ… Sky Segmentation

## Quick Start

### Installation

```bash
pip install depth-anything-3
```

### Basic Example

```python
import torch
from depth_anything_3.api import DepthAnything3

# Load model from Hugging Face Hub
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DepthAnything3.from_pretrained("depth-anything/da3nested-giant-large")
model = model.to(device=device)

# Run inference on images
images = ["image1.jpg", "image2.jpg"]  # List of image paths, PIL Images, or numpy arrays
prediction = model.inference(
    images,
    export_dir="output",
    export_format="glb"  # Options: glb, npz, ply, mini_npz, gs_ply, gs_video
)

# Access results
print(prediction.depth.shape)        # Depth maps: [N, H, W] float32
print(prediction.conf.shape)         # Confidence maps: [N, H, W] float32
print(prediction.extrinsics.shape)   # Camera poses (w2c): [N, 3, 4] float32
print(prediction.intrinsics.shape)   # Camera intrinsics: [N, 3, 3] float32
```

### Command Line Interface

```bash
# Process images with auto mode
da3 auto path/to/images \
    --export-format glb \
    --export-dir output \
    --model-dir depth-anything/da3nested-giant-large

# Use backend for faster repeated inference
da3 backend --model-dir depth-anything/da3nested-giant-large
da3 auto path/to/images --export-format glb --use-backend
```

## Model Details

- **Developed by:** ByteDance Seed Team
- **Model Type:** Vision Transformer for Visual Geometry
- **Architecture:** Plain transformer with unified depth-ray representation
- **Training Data:** Public academic datasets only

### Key Insights

πŸ’Ž A **single plain transformer** (e.g., vanilla DINO encoder) is sufficient as a backbone without architectural specialization.

✨ A singular **depth-ray representation** obviates the need for complex multi-task learning.

## Performance

πŸ† Depth Anything 3 significantly outperforms:
- **Depth Anything 2** for monocular depth estimation
- **VGGT** for multi-view depth estimation and pose estimation

For detailed benchmarks, please refer to our [paper](https://depth-anything-3.github.io) and [Visual Geometry Benchmark](https://huggingface.co/datasets/depth-anything/VGB).

## Limitations

- The model is trained on academic datasets and may have limitations on certain domain-specific images
- Performance may vary depending on image quality, lighting conditions, and scene complexity
- ⚠️ **Non-commercial use only** due to CC BY-NC 4.0 license.

## Citation

If you find Depth Anything 3 useful in your research or projects, please cite:

```bibtex
@article{depthanything3,
  title={Depth Anything 3: Recovering the visual space from any views},
  author={Haotong Lin and Sili Chen and Jun Hao Liew and Donny Y. Chen and Zhenyu Li and Guang Shi and Jiashi Feng and Bingyi Kang},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  year={2025}
}
```

## Links

- 🏠 [Project Page](https://depth-anything-3.github.io)
- πŸ“„ [Paper](https://arxiv.org/abs/)
- πŸ’» [GitHub Repository](https://github.com/ByteDance-Seed/Depth-Anything-3)
- πŸ€— [Hugging Face Demo](https://huggingface.co/spaces/depth-anything/Depth-Anything-3)
- πŸ“Š [Visual Geometry Benchmark](https://huggingface.co/datasets/depth-anything/VGB)
- πŸ“š [Documentation](https://github.com/ByteDance-Seed/Depth-Anything-3#-useful-documentation)

## Authors

[Haotong Lin](https://haotongl.github.io/) Β· [Sili Chen](https://github.com/SiliChen321) Β· [Junhao Liew](https://liewjunhao.github.io/) Β· [Donny Y. Chen](https://donydchen.github.io) Β· [Zhenyu Li](https://zhyever.github.io/) Β· [Guang Shi](https://scholar.google.com/citations?user=MjXxWbUAAAAJ&hl=en) Β· [Jiashi Feng](https://scholar.google.com.sg/citations?user=Q8iay0gAAAAJ&hl=en) Β· [Bingyi Kang](https://bingykang.github.io/)