|
|
import torch |
|
|
import tilelang |
|
|
import tilelang.language as T |
|
|
from typing import Tuple, Optional |
|
|
|
|
|
|
|
|
tilelang.set_log_level("WARNING") |
|
|
|
|
|
pass_configs = { |
|
|
tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, |
|
|
tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True, |
|
|
tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True, |
|
|
} |
|
|
|
|
|
FP8 = "float8_e4m3" |
|
|
BF16 = "bfloat16" |
|
|
FP32 = "float32" |
|
|
|
|
|
|
|
|
def fast_log2_ceil(x): |
|
|
bits_x = T.reinterpret("uint32", x) |
|
|
exp_x = (bits_x >> 23) & 0xFF |
|
|
man_bits = bits_x & ((1 << 23) - 1) |
|
|
return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0)) |
|
|
|
|
|
|
|
|
def fast_pow2(x): |
|
|
bits_x = (x + 127) << 23 |
|
|
return T.reinterpret("float32", bits_x) |
|
|
|
|
|
|
|
|
def fast_round_scale(amax, fp8_max_inv): |
|
|
return fast_pow2(fast_log2_ceil(amax * fp8_max_inv)) |
|
|
|
|
|
|
|
|
@tilelang.jit(pass_configs=pass_configs) |
|
|
def act_quant_kernel( |
|
|
N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False |
|
|
): |
|
|
M = T.symbolic("M") |
|
|
fp8_min = -448.0 |
|
|
fp8_max = 448.0 |
|
|
fp8_max_inv = 1 / fp8_max |
|
|
num_stages = 0 if round_scale else 2 |
|
|
blk_m = 32 |
|
|
group_size = 128 |
|
|
|
|
|
@T.prim_func |
|
|
def act_quant_kernel_( |
|
|
X: T.Tensor[(M, N), in_dtype], |
|
|
Y: T.Tensor[(M, N), out_dtype], |
|
|
S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype], |
|
|
): |
|
|
with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as ( |
|
|
pid_m, |
|
|
pid_n, |
|
|
): |
|
|
x_shared = T.alloc_shared((blk_m, group_size), in_dtype) |
|
|
x_local = T.alloc_fragment((blk_m, group_size), in_dtype) |
|
|
amax_local = T.alloc_fragment((blk_m,), scale_dtype) |
|
|
s_local = T.alloc_fragment((blk_m,), scale_dtype) |
|
|
y_local = T.alloc_fragment((blk_m, group_size), out_dtype) |
|
|
y_shared = T.alloc_shared((blk_m, group_size), out_dtype) |
|
|
|
|
|
for _ in T.Pipelined(1, num_stages=num_stages): |
|
|
T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared) |
|
|
T.copy(x_shared, x_local) |
|
|
T.reduce_absmax(x_local, amax_local, dim=1) |
|
|
for i in T.Parallel(blk_m): |
|
|
amax_local[i] = T.max(amax_local[i], 1e-4) |
|
|
if round_scale: |
|
|
s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv) |
|
|
else: |
|
|
s_local[i] = amax_local[i] * fp8_max_inv |
|
|
for i, j in T.Parallel(blk_m, group_size): |
|
|
y_local[i, j] = T.clamp( |
|
|
x_local[i, j] / s_local[i], fp8_min, fp8_max |
|
|
) |
|
|
for i in T.Parallel(blk_m): |
|
|
S[pid_m * blk_m + i, pid_n] = s_local[i] |
|
|
T.copy(y_local, y_shared) |
|
|
T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size]) |
|
|
|
|
|
return act_quant_kernel_ |
|
|
|
|
|
|
|
|
def act_quant( |
|
|
x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Quantizes the input tensor `x` using block-wise quantization. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`. |
|
|
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128. |
|
|
scale_fmt (Optional[str], optional): The format of the scale. Default is None. |
|
|
Returns: |
|
|
Tuple[torch.Tensor, torch.Tensor]: A tuple containing: |
|
|
- The quantized tensor with dtype `torch.float8_e4m3fn`. |
|
|
- A tensor of scaling factors with dtype `torch.float32`. |
|
|
""" |
|
|
assert x.is_contiguous(), "Input tensor must be contiguous" |
|
|
assert x.size(-1) % block_size == 0, ( |
|
|
f"Last dimension size must be divisible by block_size (block_size={block_size})" |
|
|
) |
|
|
N = x.size(-1) |
|
|
y = torch.empty_like(x, dtype=torch.float8_e4m3fn) |
|
|
s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32) |
|
|
kernel = act_quant_kernel(N, round_scale=scale_fmt is not None) |
|
|
kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size)) |
|
|
return y, s |
|
|
|
|
|
|
|
|
@tilelang.jit(pass_configs=pass_configs) |
|
|
def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"): |
|
|
assert out_dtype in [BF16, "float32"] |
|
|
|
|
|
M = T.symbolic("M") |
|
|
group_size = 128 |
|
|
block_M = 32 |
|
|
block_N = 128 |
|
|
block_K = 128 |
|
|
|
|
|
@T.prim_func |
|
|
def fp8_gemm_kernel_( |
|
|
A: T.Tensor[(M, K), FP8], |
|
|
B: T.Tensor[(N, K), FP8], |
|
|
C: T.Tensor[(M, N), out_dtype], |
|
|
scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32], |
|
|
scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32], |
|
|
): |
|
|
with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as ( |
|
|
bx, |
|
|
by, |
|
|
): |
|
|
A_shared = T.alloc_shared((block_M, block_K), FP8) |
|
|
B_shared = T.alloc_shared((block_N, block_K), FP8) |
|
|
C_shared = T.alloc_shared((block_M, block_N), out_dtype) |
|
|
Scale_C_shared = T.alloc_shared((block_M), FP32) |
|
|
C_local = T.alloc_fragment((block_M, block_N), accum_dtype) |
|
|
C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype) |
|
|
|
|
|
|
|
|
T.use_swizzle(panel_size=10) |
|
|
|
|
|
T.clear(C_local) |
|
|
T.clear(C_local_accum) |
|
|
K_iters = T.ceildiv(K, block_K) |
|
|
for k in T.Pipelined(K_iters, num_stages=4): |
|
|
|
|
|
T.copy(A[by * block_M, k * block_K], A_shared) |
|
|
|
|
|
T.copy(B[bx * block_N, k * block_K], B_shared) |
|
|
|
|
|
Scale_B = scales_b[bx * block_N // group_size, k] |
|
|
for i in T.Parallel(block_M): |
|
|
Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B |
|
|
|
|
|
T.gemm(A_shared, B_shared, C_local, transpose_B=True) |
|
|
|
|
|
for i, j in T.Parallel(block_M, block_N): |
|
|
C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i] |
|
|
T.clear(C_local) |
|
|
|
|
|
T.copy(C_local_accum, C_shared) |
|
|
T.copy(C_shared, C[by * block_M, bx * block_N]) |
|
|
|
|
|
return fp8_gemm_kernel_ |
|
|
|
|
|
|
|
|
def fp8_gemm( |
|
|
a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Perform a matrix multiplication using FP8 precision. |
|
|
|
|
|
Args: |
|
|
a (torch.Tensor): The first input matrix, must be contiguous. |
|
|
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous. |
|
|
b (torch.Tensor): The second input matrix, must be contiguous. |
|
|
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: The result of the matrix multiplication. |
|
|
""" |
|
|
assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous" |
|
|
assert a_s.is_contiguous() and b_s.is_contiguous(), ( |
|
|
"Scaling factor tensors must be contiguous" |
|
|
) |
|
|
K = a.size(-1) |
|
|
M = a.numel() // K |
|
|
N = b.size(0) |
|
|
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype()) |
|
|
kernel = fp8_gemm_kernel(N, K) |
|
|
kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s) |
|
|
return c |
|
|
|