--- license: cc-by-4.0 language: - tr - en tags: - turkish - academic - thesis - nlp - machine-learning - information-retrieval - higher-education - university - bilingual - metadata - large-scale-dataset - parquet - YOK - YÖK - tez task_categories: - text-classification - text-retrieval - summarization - translation pretty_name: Turkish Academic Theses Abstracts (TR/EN) size_categories: - 100K Note: This release contains **abstracts only**. Full texts are *not* included. --- ## 📐 Schema Each row follows this structure (example keys and meaning): | Column | Type | Description | |---------------|--------|-------------| | `tez_no` | integer | Thesis identifier (numeric code on YÖK; stable key) | | `pdf_url` | string | Public handle page for the thesis PDF on YÖK (may require permissions/login for full text) | | `title_tr` | string | Thesis title (Turkish) | | `title_en` | string | Thesis title (English, if available) | | `author` | string | Author’s full name | | `advisor` | string | Advisor / supervisor (with title when present) | | `location` | string | Institution path (university / institute / department / program) | | `subject` | string | Subject area (often `TR = EN` format) | | `index` | string | Index terms / keywords (often `TR = EN ; …`) | | `status` | string | Thesis status (e.g., `Onaylandı`) | | `degree` | string | Degree type (e.g., `Yüksek Lisans`, `Doktora`, ...) | | `language` | string | Thesis language (`Türkçe`) | | `year` | integer | Year of publication (e.g., `2016`) | | `pages` | integer | Page count (numeric string; sometimes missing) | | `abstract_tr` | string | Turkish abstract (may be empty for a subset) | | `abstract_en` | string | English abstract (may be empty for a subset) | > Some entries may miss the English or Turkish abstract; always check for null/empty values. --- ## 📦 File Format - **Parquet (.parquet)** → optimized for analytics and ML pipelines - Fast to load with pandas or Hugging Face datasets --- ## 🔍 Use Cases - **Summarization** (TR-only or EN-only) - **Translation** (TR↔EN; parallel abstracts) - **Text Classification** (e.g., research area labels after your own weak/strong labeling) - **Information Retrieval** (semantic search over abstracts; bilingual IR) --- ## 🚀 Example Usage ### Load the entire dataset ```python from datasets import load_dataset ds = load_dataset("umutertugrul/turkish-academic-theses-dataset") print(ds) ``` ### Load as a DataFrame (pandas) ```python import pandas as pd df = pd.read_parquet("tezler.parquet") print(df.head()) ``` ### Load with filtering (e.g., theses from 2020) ```python from datasets import load_dataset ds = load_dataset("umutertugrul/turkish-academic-theses-dataset", split="train") df = ds.to_pandas() df_2020 = df[df["year"] == 2020] print(df_2020.head()) ``` --- ## 📥 Citation If you use this dataset in your research or project, please cite: title = Turkish Academic Theses Abstracts (TR/EN) author = Umut Ertuğrul Daşgın url = https://huggingface.co/umutertugrul