instructions, more
Browse files- README.md +24 -3
- match.ipynb +40 -18
README.md
CHANGED
|
@@ -95,7 +95,28 @@ configs:
|
|
| 95 |
|
| 96 |
Sourced from https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/world_knowledge/jeopardy_all.jsonl
|
| 97 |
|
| 98 |
-
Description: Jeopardy consists of 2,117 Jeopardy questions separated into 5 categories:
|
| 99 |
-
Literature, American History, World History, Word Origins, and Science. The model is expected
|
| 100 |
-
to give the exact correct response to the question. It was custom curated by MosaicML from a
|
| 101 |
larger Jeopardy set available on [Huggingface](https://huggingface.co/datasets/jeopardy).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
Sourced from https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/world_knowledge/jeopardy_all.jsonl
|
| 97 |
|
| 98 |
+
Description: Jeopardy consists of 2,117 Jeopardy questions separated into 5 categories:
|
| 99 |
+
Literature, American History, World History, Word Origins, and Science. The model is expected
|
| 100 |
+
to give the exact correct response to the question. It was custom curated by MosaicML from a
|
| 101 |
larger Jeopardy set available on [Huggingface](https://huggingface.co/datasets/jeopardy).
|
| 102 |
+
|
| 103 |
+
## How to use
|
| 104 |
+
|
| 105 |
+
```python
|
| 106 |
+
from datasets import load_dataset
|
| 107 |
+
|
| 108 |
+
dataset = load_dataset("soldni/jeopardy", "mosaicml_gauntlet")
|
| 109 |
+
model = ...
|
| 110 |
+
tokenizer = ...
|
| 111 |
+
|
| 112 |
+
# Given context, try to predict the continuation
|
| 113 |
+
for row in dataset:
|
| 114 |
+
input_ids = tokenizer(row['context'], return_tensors='pt').to(model.device)
|
| 115 |
+
outputs = model.generate(input_ids, max_new_tokens=100)
|
| 116 |
+
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 117 |
+
correct = row['continuation'] in decoded
|
| 118 |
+
print("Gold:", row['continuation'])
|
| 119 |
+
print("Pred:", decoded)
|
| 120 |
+
print("Correct?", correct)
|
| 121 |
+
print("----")
|
| 122 |
+
```
|
match.ipynb
CHANGED
|
@@ -258,14 +258,16 @@
|
|
| 258 |
},
|
| 259 |
{
|
| 260 |
"cell_type": "code",
|
| 261 |
-
"execution_count":
|
| 262 |
"metadata": {},
|
| 263 |
"outputs": [
|
| 264 |
{
|
| 265 |
"name": "stdout",
|
| 266 |
"output_type": "stream",
|
| 267 |
"text": [
|
| 268 |
-
"Missing: 0\n"
|
|
|
|
|
|
|
| 269 |
]
|
| 270 |
}
|
| 271 |
],
|
|
@@ -275,6 +277,8 @@
|
|
| 275 |
"\n",
|
| 276 |
"missing = [{**v, 'key': k} for k, v in new_questions.items() if k not in old_questions_subset]\n",
|
| 277 |
"print(f\"Missing: {len(missing)}\")\n",
|
|
|
|
|
|
|
| 278 |
"for m in missing:\n",
|
| 279 |
" print(m['context'])\n",
|
| 280 |
" print(m['continuation'])\n",
|
|
@@ -291,13 +295,21 @@
|
|
| 291 |
},
|
| 292 |
{
|
| 293 |
"cell_type": "code",
|
| 294 |
-
"execution_count":
|
| 295 |
"metadata": {},
|
| 296 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
{
|
| 298 |
"data": {
|
| 299 |
"application/vnd.jupyter.widget-view+json": {
|
| 300 |
-
"model_id": "
|
| 301 |
"version_major": 2,
|
| 302 |
"version_minor": 0
|
| 303 |
},
|
|
@@ -311,28 +323,21 @@
|
|
| 311 |
{
|
| 312 |
"data": {
|
| 313 |
"application/vnd.jupyter.widget-view+json": {
|
| 314 |
-
"model_id": "
|
| 315 |
"version_major": 2,
|
| 316 |
"version_minor": 0
|
| 317 |
},
|
| 318 |
"text/plain": [
|
| 319 |
-
"Creating parquet from Arrow format:
|
| 320 |
]
|
| 321 |
},
|
| 322 |
"metadata": {},
|
| 323 |
"output_type": "display_data"
|
| 324 |
},
|
| 325 |
-
{
|
| 326 |
-
"name": "stderr",
|
| 327 |
-
"output_type": "stream",
|
| 328 |
-
"text": [
|
| 329 |
-
"No files have been modified since last commit. Skipping to prevent empty commit.\n"
|
| 330 |
-
]
|
| 331 |
-
},
|
| 332 |
{
|
| 333 |
"data": {
|
| 334 |
"application/vnd.jupyter.widget-view+json": {
|
| 335 |
-
"model_id": "
|
| 336 |
"version_major": 2,
|
| 337 |
"version_minor": 0
|
| 338 |
},
|
|
@@ -346,7 +351,7 @@
|
|
| 346 |
{
|
| 347 |
"data": {
|
| 348 |
"application/vnd.jupyter.widget-view+json": {
|
| 349 |
-
"model_id": "
|
| 350 |
"version_major": 2,
|
| 351 |
"version_minor": 0
|
| 352 |
},
|
|
@@ -357,13 +362,27 @@
|
|
| 357 |
"metadata": {},
|
| 358 |
"output_type": "display_data"
|
| 359 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
{
|
| 361 |
"data": {
|
| 362 |
"text/plain": [
|
| 363 |
-
"CommitInfo(commit_url='https://huggingface.co/datasets/soldni/jeopardy/commit/
|
| 364 |
]
|
| 365 |
},
|
| 366 |
-
"execution_count":
|
| 367 |
"metadata": {},
|
| 368 |
"output_type": "execute_result"
|
| 369 |
}
|
|
@@ -372,12 +391,15 @@
|
|
| 372 |
"all_questions = []\n",
|
| 373 |
"mosaicml_gauntlet = []\n",
|
| 374 |
"for row in old_questions:\n",
|
| 375 |
-
" key = '
|
| 376 |
" all_questions.append(row)\n",
|
| 377 |
" row['mosaicml_gauntlet'] = key in new_questions\n",
|
| 378 |
" if row['mosaicml_gauntlet']:\n",
|
| 379 |
" mosaicml_gauntlet.append(row)\n",
|
| 380 |
"\n",
|
|
|
|
|
|
|
|
|
|
| 381 |
"mosaicml_gauntlet_dataset = datasets.Dataset.from_list(mosaicml_gauntlet)\n",
|
| 382 |
"all_questions_dataset = datasets.Dataset.from_list(all_questions)\n",
|
| 383 |
"\n",
|
|
|
|
| 258 |
},
|
| 259 |
{
|
| 260 |
"cell_type": "code",
|
| 261 |
+
"execution_count": 17,
|
| 262 |
"metadata": {},
|
| 263 |
"outputs": [
|
| 264 |
{
|
| 265 |
"name": "stdout",
|
| 266 |
"output_type": "stream",
|
| 267 |
"text": [
|
| 268 |
+
"Missing: 0\n",
|
| 269 |
+
"Old questions: 2220\n",
|
| 270 |
+
"New questions: 2113\n"
|
| 271 |
]
|
| 272 |
}
|
| 273 |
],
|
|
|
|
| 277 |
"\n",
|
| 278 |
"missing = [{**v, 'key': k} for k, v in new_questions.items() if k not in old_questions_subset]\n",
|
| 279 |
"print(f\"Missing: {len(missing)}\")\n",
|
| 280 |
+
"print(f\"Old questions: {len(old_questions_subset)}\")\n",
|
| 281 |
+
"print(f\"New questions: {len(new_questions)}\")\n",
|
| 282 |
"for m in missing:\n",
|
| 283 |
" print(m['context'])\n",
|
| 284 |
" print(m['continuation'])\n",
|
|
|
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"cell_type": "code",
|
| 298 |
+
"execution_count": 19,
|
| 299 |
"metadata": {},
|
| 300 |
"outputs": [
|
| 301 |
+
{
|
| 302 |
+
"name": "stdout",
|
| 303 |
+
"output_type": "stream",
|
| 304 |
+
"text": [
|
| 305 |
+
"Mosaicml Gauntlet: 2116\n",
|
| 306 |
+
"All questions: 216930\n"
|
| 307 |
+
]
|
| 308 |
+
},
|
| 309 |
{
|
| 310 |
"data": {
|
| 311 |
"application/vnd.jupyter.widget-view+json": {
|
| 312 |
+
"model_id": "b0db52ff66c84083984ce81539bb3129",
|
| 313 |
"version_major": 2,
|
| 314 |
"version_minor": 0
|
| 315 |
},
|
|
|
|
| 323 |
{
|
| 324 |
"data": {
|
| 325 |
"application/vnd.jupyter.widget-view+json": {
|
| 326 |
+
"model_id": "e07846cf593e47e78cc7c62d179c5baa",
|
| 327 |
"version_major": 2,
|
| 328 |
"version_minor": 0
|
| 329 |
},
|
| 330 |
"text/plain": [
|
| 331 |
+
"Creating parquet from Arrow format: 0%| | 0/3 [00:00<?, ?ba/s]"
|
| 332 |
]
|
| 333 |
},
|
| 334 |
"metadata": {},
|
| 335 |
"output_type": "display_data"
|
| 336 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
{
|
| 338 |
"data": {
|
| 339 |
"application/vnd.jupyter.widget-view+json": {
|
| 340 |
+
"model_id": "af4036c1ed13441c9a6cc1de5558dfa3",
|
| 341 |
"version_major": 2,
|
| 342 |
"version_minor": 0
|
| 343 |
},
|
|
|
|
| 351 |
{
|
| 352 |
"data": {
|
| 353 |
"application/vnd.jupyter.widget-view+json": {
|
| 354 |
+
"model_id": "e23eca2e0aac433baba52069b40c2e3a",
|
| 355 |
"version_major": 2,
|
| 356 |
"version_minor": 0
|
| 357 |
},
|
|
|
|
| 362 |
"metadata": {},
|
| 363 |
"output_type": "display_data"
|
| 364 |
},
|
| 365 |
+
{
|
| 366 |
+
"data": {
|
| 367 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 368 |
+
"model_id": "7a6982d43029428c98258352ec90bf28",
|
| 369 |
+
"version_major": 2,
|
| 370 |
+
"version_minor": 0
|
| 371 |
+
},
|
| 372 |
+
"text/plain": [
|
| 373 |
+
"README.md: 0%| | 0.00/2.34k [00:00<?, ?B/s]"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"output_type": "display_data"
|
| 378 |
+
},
|
| 379 |
{
|
| 380 |
"data": {
|
| 381 |
"text/plain": [
|
| 382 |
+
"CommitInfo(commit_url='https://huggingface.co/datasets/soldni/jeopardy/commit/95da23525ad41487becfaf821be025ccefda6a34', commit_message='Upload dataset', commit_description='', oid='95da23525ad41487becfaf821be025ccefda6a34', pr_url=None, pr_revision=None, pr_num=None)"
|
| 383 |
]
|
| 384 |
},
|
| 385 |
+
"execution_count": 19,
|
| 386 |
"metadata": {},
|
| 387 |
"output_type": "execute_result"
|
| 388 |
}
|
|
|
|
| 391 |
"all_questions = []\n",
|
| 392 |
"mosaicml_gauntlet = []\n",
|
| 393 |
"for row in old_questions:\n",
|
| 394 |
+
" key = ''.join([ch for ch in f\"{row['context']} {row['continuation']}\" if ch not in punctuation and ch not in whitespace])\n",
|
| 395 |
" all_questions.append(row)\n",
|
| 396 |
" row['mosaicml_gauntlet'] = key in new_questions\n",
|
| 397 |
" if row['mosaicml_gauntlet']:\n",
|
| 398 |
" mosaicml_gauntlet.append(row)\n",
|
| 399 |
"\n",
|
| 400 |
+
"print(f\"Mosaicml Gauntlet: {len(mosaicml_gauntlet)}\")\n",
|
| 401 |
+
"print(f\"All questions: {len(all_questions)}\")\n",
|
| 402 |
+
"\n",
|
| 403 |
"mosaicml_gauntlet_dataset = datasets.Dataset.from_list(mosaicml_gauntlet)\n",
|
| 404 |
"all_questions_dataset = datasets.Dataset.from_list(all_questions)\n",
|
| 405 |
"\n",
|