File size: 7,353 Bytes
7a107ef
 
 
 
 
 
 
 
d0f8bf8
 
c1f7700
7a107ef
c1157c7
b3bfe30
 
3f485d5
d0f8bf8
 
 
 
80cad1a
d0f8bf8
 
 
 
 
 
 
 
 
 
 
 
f3b98af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f8bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91496e8
d0f8bf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0d78a
d0f8bf8
ac0d78a
d0f8bf8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
task_categories:
- automatic-speech-recognition
language:
- ar
tags:
- quran
- coran
- everyayah
- ASR
pretty_name: Quran-Ayah-Corpus
size_categories:
- 100K<n<1M
license: apache-2.0
---
# Quran-Ayah-Corpus: A Multi-Reciter Arabic Quranic Speech Dataset

## Dataset Description:
Ayah-Corpus is a large-scale, multi-reciter Arabic speech dataset meticulously curated for Automatic Speech Recognition (ASR) tasks. It consists of high-quality audio recordings of Quranic verses (Ayahs) paired with their corresponding exact transcriptions. The audio is sourced from two primary repositories: Al-Quran.cloud and EveryAyah.com.

This dataset is specifically designed to facilitate the development of ASR models for Quranic Arabic, which features a distinct vocabulary, phonetic structure, and recitation style (Tajweed) compared to Modern Standard Arabic or colloquial dialects. All audio files have been standardized to a **16kHz** sampling rate to be compatible with most modern ASR pipelines.

## Dataset Structure:
The dataset is divided into train, validation, and test splits, ensuring a strict separation of reciters between the sets to evaluate model generalization to unseen voices.

### Data Splits:
| Split | Number of Samples | Number of Reciters |
|-------|------------------|-------------------|
| train | 230,254 | 38 |
| validation | 14,416 | 3 |
| test | 18,593 | 3 |
| **Total** | **263,263** | **44** |



📊 Analyzing 230254 durations (rows) from the Excel file...
Analyzing durations: 100%|██████████| 230254/230254 [00:00<00:00, 326999.12it/s]
========================================
🎯 RESULTS BY THRESHOLD (Excel-based) 🎯
========================================

--- Rows (files) shorter than 500 seconds ---
   📁 Number of rows: 230254
   🎯 Total duration: 3968417.59 seconds
   ⏰ Which is: 1102h 20m 17.59s

--- Rows (files) shorter than 400 seconds ---
   📁 Number of rows: 230253
   🎯 Total duration: 3967958.12 seconds
   ⏰ Which is: 1102h 12m 38.12s

--- Rows (files) shorter than 300 seconds ---
   📁 Number of rows: 230249
   🎯 Total duration: 3966514.47 seconds
   ⏰ Which is: 1101h 48m 34.47s

--- Rows (files) shorter than 200 seconds ---
   📁 Number of rows: 230219
   🎯 Total duration: 3959690.55 seconds
   ⏰ Which is: 1099h 54m 50.55s

--- Rows (files) shorter than 100 seconds ---
   📁 Number of rows: 229479
   🎯 Total duration: 3866971.27 seconds
   ⏰ Which is: 1074h 9m 31.27s

--- Rows (files) shorter than 90 seconds ---
   📁 Number of rows: 229066
   🎯 Total duration: 3827934.93 seconds
   ⏰ Which is: 1063h 18m 54.93s

--- Rows (files) shorter than 80 seconds ---
   📁 Number of rows: 228390
   🎯 Total duration: 3770780.24 seconds
   ⏰ Which is: 1047h 26m 20.24s

--- Rows (files) shorter than 70 seconds ---
   📁 Number of rows: 227276
   🎯 Total duration: 3687626.85 seconds
   ⏰ Which is: 1024h 20m 26.85s

--- Rows (files) shorter than 60 seconds ---
   📁 Number of rows: 225348
   🎯 Total duration: 3563535.47 seconds
   ⏰ Which is: 989h 52m 15.47s

--- Rows (files) shorter than 50 seconds ---
   📁 Number of rows: 221755
   🎯 Total duration: 3367880.79 seconds
   ⏰ Which is: 935h 31m 20.79s

--- Rows (files) shorter than 40 seconds ---
   📁 Number of rows: 215071
   🎯 Total duration: 3071315.05 seconds
   ⏰ Which is: 853h 8m 35.05s

--- Rows (files) shorter than 30 seconds ---
   📁 Number of rows: 199514
   🎯 Total duration: 2538879.34 seconds
   ⏰ Which is: 705h 14m 39.34s

--- Rows (files) shorter than 20 seconds ---
   📁 Number of rows: 163816
   🎯 Total duration: 1669293.66 seconds
   ⏰ Which is: 463h 41m 33.66s

--- Rows (files) shorter than 10 seconds ---
   📁 Number of rows: 85129
   🎯 Total duration: 535014.06 seconds
   ⏰ Which is: 148h 36m 54.06s

--- Rows (files) shorter than 5 seconds ---
   📁 Number of rows: 26516
   🎯 Total duration: 101191.18 seconds
   ⏰ Which is: 28h 6m 31.18s

========================================

### Data Fields:
Each instance in the dataset consists of the following fields:

- **audio**: A dictionary containing the raw audio data (bytes) and its sampling rate
- **duration**: The duration of the audio file in seconds (float)
- **text**: The ground-truth transcription of the Quranic verse (string)
- **reciter**: The name of the reciter (Qari) (string)

### Data Instance Example:
```python
{
  "audio": {
    "path": null,
    "bytes": "...",
    "sampling_rate": 16000
  },
  "duration": 12.17,
  "text": "الْحَمْدُ لِلَّهِ رَبِّ الْعَالَمِينَ",
  "reciter": "Karim Mansoori"
} 

```
How to Use
The dataset can be easily loaded using the datasets library:

```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("rabah2026/Quran-Ayah-Corpus")

# Accessing a split
train_dataset = dataset["train"]

# Printing the first example
print(train_dataset[0])

```

## Reciters in each Split:
To ensure robustness and prevent data leakage, reciters are exclusively assigned to one split.

### Train Set Reciters (38):
- Abdul Basit
- Abdullah Basfar
- Abdurrahmaan As-Sudais
- Abdul Samad
- Abu Bakr Ash-Shaatree
- Ahmed ibn Ali al-Ajamy
- Alafasy
- Hani Rifai
- Husary
- Husary (Mujawwad)
- Hudhaify
- Ibrahim Akhdar
- Maher Al Muaiqly
- Minshawi
- Minshawy (Mujawwad)
- Muhammad Ayyoub
- Muhammad Jibreel
- Parhizgar
- Ayman Sowaid
- Abdullaah Awaad Al-Juhaynee
- Abdullah Matroud
- Ahmed Neana
- Akram AlAlaqimy
- Ali Hajjaj AlSuesy
- Ali Jaber
- Fares Abbad
- Ghamadi
- Khaalid Abdullaah Al-Qahtaanee
- Mohammad Al Tablaway
- Muhammad AbdulKareem
- Muhsin Al Qasim
- Nabil Rifa3i
- Nasser Alqatami
- Sahl Yassin
- Salaah AbdulRahman Bukhatir
- Salah Al Budair
- Saood Ash-Shuraym
- Yaser Salamah

### Validation Set Reciters (3):
- Mustafa Ismail
- Yasser Ad-Dussary
- Aziz Alili

### Test Set Reciters (3):
- Karim Mansoori
- Khalefa Al Tunaiji
- Mahmoud Ali Al Banna

## Dataset Creation:
The dataset was curated through a multi-step process:

- CSV files containing metadata about audio URLs and transcriptions were collected from alquran.cloud and everyayah.com
- The corresponding audio files were downloaded and converted to .wav format at a 16kHz sampling rate
- A cleaning script ensured data integrity by verifying that every audio file had a corresponding metadata entry
- A processing pipeline packaged the data with metadata into Apache Parquet files
- The data was uploaded to the Hugging Face Hub, chunked into 3 Parquet files per reciter for memory efficiency

## Licensing Information:
This dataset is licensed under the **Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)** license. You are free to share and adapt the material for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and distribute your contributions under the same license.

## Citation:
If you use this dataset in your research, please cite it as follows:

```bibtex
@dataset{rabah2026_ayah_corpus,
  author    = {Rabah},
  title     = {Quran-Ayah-Corpus: A Multi-Reciter Arabic Quranic Speech Dataset},
  year      = {2025},
  url       = {https://huggingface.co/datasets/rabah2026/Quran-Ayah-Corpus}
}
```

## Curated by:
This dataset was curated by Rabah.